
TORIC VARIETIES PRESENTATION

MAXIM ARAP AND JIM STANKEWICZ

These notes are strongly based off of the short paper ”Geometric Invariant The-
ory and Toric Varieties” by Nick Proudfoot and the book ”Lectures on Invariant
Theory” by Igor Dolgachev.

1. Jim’s part of the presentation

1.1. When exactly can we take a quotient anyways? Consider a familiar
example. Consider the action of C× on Cn+1 by t · (x0, . . . xn) = (tx0, . . . , txn).

The orbits of this action are

[x0 : · · · : xn] = {(y0, . . . , yn) : yi = txi for some t ∈ C×}
for (x0, . . . , xn) such that some xi 6= 0, and the singleton orbit {(0, . . . , 0)}.

The quotient Cn+1/C× is unfortunately not a nice geometric object. Note for
instance that (0, . . . , 0) is a limit of every other point.

Worse yet, the functions on this quotient are exactly the same as those on the
point (0, . . . , 0). Suppose that F is a C× invariant function on an open set of Cn+1

containing a point x ∈ Cn+1. Let O(x) be the C× orbit of x and note that if y lies in
the closure of O(x), then C×-invariance demands that F (x) = F (y). But now note
that (0, . . . , 0) lies in every orbit closure, so for all x ∈ Cn+1, F (x) = F ((0, . . . , 0)).
Thus as an algebraic object, we may as well just be dealing with the point (0, . . . , 0).

However, if we remove the unstable point (0, . . . , 0) and THEN take the quotient,
we get our old friend Pn.

Suppose in general that we have a group G acting on a variety X. A good
quotient X/G should include a regular map f : X → X/G so the fibers of this map
ought to be closed in X. As shown above, this need not be the case. The solution
we saw above is to take a G-invariant Zariski open subset U of X and consider
the quotient map U → U/G. Geometric Invariant Theory (GIT) is a method for
choosing this subset.

Before we even get started, we restrict to reductive groups so that we can take
advantage of the following theorem:

Nagata’s Theorem If G is a reductive group acting on a finitely generated
k-algebra R then RG is also finitely generated.

A proof of this fact is found in Dolgachev. We don’t define a reductive group
here, but we remark that all tori over C split as (C×)n so they are semi-simple
and thus reductive (whatever that means). Other examples of reductive groups are
GLn and SLn. Examples of non-reductive groups are Ga or any group that can be
embedded into the upper-triangular matrices with 1’s on the diagonal.
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1.2. A review of Projective varieties and line bundles.

Definition 1.1. Let S =
⊕
d∈Z≥0

Sd be a Z≥0-graded ring. We may define a special

ideal called the irrelevant ideal S+ =
⊕
d>0

Sd. Then Proj(S) is defined to be the

space of homogeneous prime ideals p 6⊃ S+ of S endowed with the Zariski topology.

If you wish, you may think of Proj as Spec but with some extra technical con-
ditions (many people do!). The point however is that the Proj construction gives a
line bundle on Proj(S) called O(1). It is so named because if S is a C-algebra its
global sections are exactly the C vector space S1.

Why do we care about line bundles? Well recall first that a line bundle L π→ X
is a morphism such that for all x ∈ X there is an open set U such that π−1(Ux) ∼=
Ux × A1. The reason we care about line bundles is that the only regular functions
on a projective variety are constants, and therefore, we have no way of embedding
an abstract projective variety into projective space using regular functions on that
variety. So, instead of regular functions, we use sections of a line bundle over X to
embed X into a projective space.

Note that Proj(S) a projective variety if and only if O(1) is ample. If G acts on
Proj(S), giving an action of G on S is equivalent to giving an action of G on a line
bundle L (which we take to be O(1)). More generally, we call the extension of this
action a linearization of X ×G→ X to (X,L)×G→ (X,L).

Once we’ve defined that action, we have an analogous action on L⊗m for m ∈ Z.
Now suppose s is a G-invariant global section of L⊗m for such an m.

Definition 1.2. Consider the set {x ∈ X : s(x) 6= 0}. If this is an affine subset of
X, we denote it Xs. If x ∈ X lies in Xs for some G-invariant global section of L⊗m

then we say that x is semistable. If not, we say that x is unstable. We denote the
points which are semistable with respect to the linearization on L by Xss(L).

Example 1.3. Consider X = Cn+1 and G = C× under the action we described at
the start. It can be shown that every line bundle is isomorphic to the trivial bundle
X × A1. Thus a linearization will be defined by a character χ : C× → C× so that
t · (x, v) = (tx, χ(t)v). Of course such a character must be of the form t 7→ tm for
some integer m.

A global section of the trivial line bundle on Cn+1 = Spec(C[t0, . . . , tn]) will be
given by a polynomial F (t0, . . . , tn) so that s(x) = (x, F (x). The action of t on s
via the linearization above is given as (t · s)(x) = (x, tmF (t−1x)).

Thus the G-invariant sections are given by the F which are homogeneous poly-
nomials of degree m.

If m < 0 there are no G-invariant sections so there are no semistable points.
Hence Xss(L)/G = ∅.

If m = 0, the only G-invariant sections are constant, so the whole space is
semistable. However the only regular functions will be the G-invariant sections, so
the quotient is just a point.

However, if m > 0 we have a linearization that will actually help us. If x =
(x0, . . . , xn) 6= (0, . . . , 0) then there exists some xi 6= 0. This means that there is
a G-invariant section s for which s(x) is nonzero ( tmi ) and for which Xs is affine.
Meanwhile s((0, . . . , 0)) = ((0, . . . , 0), 0) for every G-invariant section s. Therefore,
this is the only unstable point. •
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Remark 1.4. Essentially the same argument can be made to show that if S is a
graded ring, Proj(S) is the GIT quotient of Spec(S) by C×.

Definition 1.5. Define the GIT quotient Xss(L)/G of X,L by G as X//LG.

In the above example, we could take any m > 0, but if m > 1 we could recognize
the linearization as equivalent to the linearization on the m-th tensor power of the
trivial bundle. In general, it can be difficult to find a suitable linearization, but at
least in the case of varieties and schemes which are projective over affine, we can
say the following:

Theorem 1.6. Proj(S)//O(1)G = Proj(SG). Moreover, if Proj(S) is projective
(that is, O(1) is ample) then Proj(SG) also is.

2. Maxim’s part of the presentation

Fix an n-tuple α = (α1, . . . , αn) of integers and let (C∗)n act onR = C[x1, . . . , xn, t]
by the rules

λ · xi = λixi and λ · t = λα1
1 · · ·λαn

n t

for λ ∈ (C∗)n. This can be viewed as an action of (C∗)n on Cn with a lineariza-
tion to the trivial bundle given by α. Note that Cn = Proj C[x1, . . . , xn, t], where
deg xi = 0 and deg t = 1. Indeed, Proj C[x1, . . . , xn, t] can be defined as the quo-
tient of Cn+1 − {0} by the action of C∗, acting trivially on the first n coordinates
and acting by scalar multiplication on the last coordinate.

Let G ≤ (C∗)n be an algebraic subgroup and consider the short exact sequence
of algebraic groups

1→ G→ (C∗)n → T → 1

and the induced short exact sequence of tangent spaces at the identity elements

0→ g→ tn → t→ 0,

which is a short exact sequence of complex Lie algebras. Let {e1, . . . , en} be the
coordinate vectors in tn ' Cn and let ēi be the image of ei in t. We have the lattice

tZ = ker{exp : t→ T} ⊂ t

and we define tR = tZ⊗Z R. Given an n-tuple of integers α = (α1, . . . , αn) as before,
we may define a polyhedron

∆ = {v ∈ t∗R | v · ēi ≥ αi for all i }

and let
σ = σ∆ = Closure

(
{(v, r) ∈ t∗R × R | r ≥ 0 and v ∈ r ·∆}

)
be the cone over ∆. (Draw a cone over the interval, a cone over a half-line and a
cone over a triangle.) Let

Sσ = σ∆ ∩ (t∗Z × Z)

be the semigroup of all the lattice points in the cone σ.

Theorem 1. RG ' C[Sσ]. Geometrically, the quotient Cn//G is isomorphic to the
toric variety Proj C[Sσ].
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Example 2.1. Let ∆ = R≥0 ⊂ R be the ray of non-negative real numbers. Then
σ = (R≥0)2 and C[Sσ] = C[x, t] with deg x = 0 and deg t = 1. The associated toric
variety is Proj C[x, t] ' C. Geometrically, T ' C∗ and G is the trivial group {1}.
So, we took the quotient of C by the trivial group and got C back. More generally,
the positive orthant in Rd corresponds to the toric variety Cd, equipped with the
trivial line bundle.

•
Example 2.2. Let ∆ = [0, 1] be the closed unit interval in R. Then Sσ = C[x, y]
is a polynomial ring with x, y having degree 1. The associated toric variety is P1.
Geometrically, C∗ acts on C2 by coordinate-wise scalar multiplication and the origin
is the unique unstable point. More generally, the standard d-simplex in Rd gives
rise to the toric variety Pd with the standard line bundle OPd(1).

•
Example 2.3. Let ∆ = [0, 1]× [0, 1] ⊂ R2. We may check that

C[Sσ] = C[x, y, z, w]/(xz − yw),

where x, y, z, w each have degree 1. Geometrically, we have an action of (C∗)2 on
C4 given by

(λ, µ) · (z1, z2, z3, z4) = (λz1, λz2, µz3, µz4).
The unstable locus consists of points where either z1 = z2 = 0 or z3 = z4 = 0. The
quotient of semistable points by (C∗)2 is isomorphic to P1 × P1.

•


