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This document contains a wish list for a robust quaternion package in Sage, as
discussed at Sage Days 61 in Copenhagen in August 2014. The need for such a
package is felt because the uses of quaternions are legion. To name a few:

• Through hyperbolic geometry, quaternion algebras give rise to generaliza-
tions of classical modular varieties, some of the simplest examples of which
are Shimura curves. Having good quaternion functionality in Sage would
make these objects more tangible.
• Quaternion algebras were essential in Wiles’ proof of Fermat’s last theorem

and form an integral part of the Langlands program. This is most decidedly
not merely a theoretical issue; many calculations involving Hilbert modular
forms can be performed effectively by the clever use of quaternion algebras.
• In the study of counterexamples to the Hasse Principle, one needs to work

with elements of Brauer groups and quaternion algebras are the most con-
crete examples of these.
• Considering quaternion algebras over the rationals leads to the study of

genus 2 curves with many endomorphisms in characteristic 0 on the one
hand and supersingular elliptic curves in characteristic p on the other.

The list of authors consists of the conference participants who took part in
the discussion which led to the creation of this document. Special thanks go to
Doctor Sijsling, who took notes during the discussion which slowly morphed into
this document. This conference was supported by VILLUM FONDEN through
the network for Experimental Mathematics in Number Theory, Operator Algebras,
and Topology, and through the Department of Mathematics at the University of
Copenhagen.

1. What would a robust implementation of quaternion algebras look
like?

Before describing how to best improve the open source computation of quater-
nions, we will describe what kind of goals we are setting. In particular, below we
describe “medium-big” dreams for a suite of quaternionic algorithms to be obtained
over the next 2-5 years.

Following the famous Eichler quote that, “There are five basic arithmetic op-
erations: addition, subtraction, multiplication, division, and modular forms,” we
organize our goals into five categories.

1.1. Quaternion algebras over fields. To start with, we need methods to con-
struct and manipulate quaternion algebras B over a field F . Later we will specify
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F to be a number field, although there is certainly interest in function fields so that
one can compute Drinfeld modular forms.

1.1.1. Constructors.

• Constructing B over a field of characteristic 6= 2 as B = F ⊕Fi⊕Fj⊕Fk,
where ij = −ji = k, starting from the squares a = i2 and b = j2. The

corresponding algebra is denoted by
(

a,b
F

)
. This is the preferable standard

presentation of the algebra (in char6= 2).
• Constructing B over a number field by specifying the ramifying places v of
F , i.e., those places v for which B ⊗ Fv 6∼= M2(Fv).
• There should be a constructor which allows one to build a quaternion alge-

bra over a field F by a quadratic field K and an element b of F×. We denote

this algebra
(

K,b
F

)
. This is in some sense the correct way to think about

characteristic 2 quaternion algebras although it seems likely that further
optimization will be required.

1.1.2. Basic arithmetic operations. Although there are algorithms for addition, sub-
traction, multiplication, and division, it is important that these be optimized to be
as fast as possible.

1.1.3. Recognizing if a given associative algebra is a quaternion algebra. Deciding
whether or not a given associative algebra is central simple of dimension 4 over

F , and if so, returning an isomorphism with a quaternion algebra B =
(

a,b
F

)
in

standard presentation.

1.1.4. Identifying matrix rings and return isomorphisms. Given a quaternion alge-

bra in standard presentation
(

a,b
F

)
, we want to be able to efficiently decide if it is

isomorphic to the matrix ring M2(F ) and if so provide the desired isomorphism.
The former is essentially the computation of Hilbert symbols. The latter is easy is
one has a zerodivisor, and it is necessary and sufficient to find an F -rational point
on a conic (see below).

1.1.5. Isomorphism testing. More generally, test for isomorphism between two dif-
ferent quaternion. At least over global fields, one can detect two algebras are
isomorphic again by computing Hilbert symbols; exhibiting such an isomorphism
can be achieved by finding a zero of the associated Albert form, a quadratic form
in six variables.

1.1.6. Hilbert symbols. Given B =
(

a,b
F

)
, calculate the Hilbert symbol (a, b), which

is 1 if and only if the conic ax2+by2 = z2 has an F -rational point and −1 otherwise.
The algebra B is isomorphic to M2(F ) if and only if (a, b) = 1.

1.1.7. pMatrixRing for Fields. Return an isomorphism B ⊗ Fv → M2(Fv) if B is
split at v and an isomorphism between B and the non-split quaternion algebra over
Fv otherwise. It remains to decide which standard presentation to take for the
latter algebra, specifically which unit and uniformizer to take.
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1.1.8. Norm equations/Embeddings of quadratic fields. The algebra B =
(

a,b
F

)
splits if and only if the element b is a norm for the extension F (a)|F .

A quadratic extension K of F embeds into B if and only if B ⊗F K is split.
Given K, determine whether or not K embeds into B by using norm equations,
and give the embedding explicitly if it does.

1.1.9. Relations with conics and quadratic spaces. Given B, the 3-dimensional F -
vector space B0 of elements of trace 0 is equipped with the quadratic form coming
from the reduced norm on B. Equating the norm to zero gives rise to a conic Q in
the corresponding 2-dimensional projective space over F .

Another way to phrase the key identity for norm equations and field embeddings
is that the algebra B splits if and only if the associated conic Q admits a point over
F . Implement all links of this kind between quaternion algebras over F and conics
and/or quadratic spaces over F .

1.2. Quaternion orders. Given an algebra B over a number field F , one can
consider the lattices of B, i.e., the projective ZF -modules of rank 4 in B, as well as
the orders of B, i.e., those lattices of B that are also subrings of B. This section
considers the orders, while the desired functionality for lattices is described in the
next section.

An Eichler order O is the intersection of two maximal orders O1,O2; its level is
the ZF ideal N such that O1/O ∼= (ZF /N) as ZF -modules. In what follows, we do
not assume any of the orders involved to be Eichler unless explicit mention to the
contrary is made.

It is often worthwhile to consider more general lattices and orders, i.e., over
small base rings R than ZF , as well as S-integral orders O.

1.2.1. Constructors. If we want quaternion orders in more generality than class
number one number fields, we are going to have to put some work into creating
a more robust suite of algorithms for computing with modules over Dedekind do-
mains. Implement the following methods to construct orders:

• Constructing an Eichler order O from the discriminant of the algebra B
and the level N of O. More generally, construct the orders of given index
in a maximal order. Currently maximal orders are implemented over Z,
but this functionality should exist in all cases.
• Construct the unique order O that is free of rank 4 over ZF from the

discriminants D1, D2, D3 of the elements i, j, k such that O = ZF ⊕ZF i⊕
ZF j ⊕ ZF k.
• Construct the unique order corresponding to a ternary quadratic form over
ZF via the Clifford Functor.

1.2.2. Optimize order representation. Optimize the representation of the order by
using LLL over Z or ZF to find “smaller” isomorphic representations, as in the case
of number fields.

1.2.3. Diminishing and enlarging. Given two orders O,O′, calculate their intersec-
tion. Given an order O and an element x, determine the smallest order containing
both if it exists.
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1.2.4. Containing orders. Given an order O, construct an order O′ containing O
that is maximal at a given (cofinite) set of places S of F . More generally, construct
all orders containing O.

1.2.5. Suborders. Given a finite bound and an order O, determine all suborders of
O of index up to that bound (e.g., using Sirolli’s algorithm).

1.2.6. Embeddings and Embedding numbers of quadratic orders. Given an order R
in a quadratic extension K of F , return the embeddings (or only the optimal ones
if so desired) of R into the order O. Determine the corresponding CM points after
the implementation of the corresponding hyperbolic geometry; see also the section
on S-units below.

1.2.7. Bases. Write a function HasBasis that returns true if and only if O is a free
module over ZF . More generally, write functions that return a pseudo-basis or a
Z-basis of O. As much computation depends on finding good pseudobases quickly,
this is a major goal with implications far beyond quaternions.

1.2.8. Conjugacy. Given two orders O and O′, determine if O and O′ are conjugate.
In general, knowing that two orders are isomorphic, find a conjugation that effects
this isomorphism after Skolem-Noether.

1.2.9. Eichler orders as intersections. Given an Eichler order O, find two maximal
orders O1 and O2 such that O = O1 ∩ O2.

1.2.10. Eichler invariants. Given an order O and a prime p of ZF , let J be the
Jacobson radical of O/pO. Determine the Eichler invariant of O. This invariant
is 0 if J has dimension 3; otherwise, it is 1 if (O/pO)/J is a sum of two copies of
ZF /p, and it is −1 if (O/pO)/J is the quadratic extension of ZF /p.

1.2.11. Mass formula. Given a quaternion order O in a rational definite quaternion
algebra B of discriminant D, it is often much easier to write a weighted sum over the
projective right ideal classes than the actual size of the class group. In particular,
if O(I) denote the left order of a right ideal I and w(I) = #O(I)/2 then

∑
1/w(I)

is called the Eichler mass of O. In particular, if O is maximal then the mass of O is
simply φ(D)/12. This equality is known as the Eichler mass formula and its ease of
computation makes it especially useful. Generalizations to other settings become
easy once Eichler invariants are implemented. [KV10]

1.2.12. Relations with quadratic spaces. As in the field case, return the trace 0
lattice with the corresponding quadratic form. This is already implemented over
the integers.

1.2.13. Elements of norm. Given a bound B and an order O, find the elements of
norm up to B (up to the units of O). This functionality is extremely important for
the computation of Hecke operators. As such this should be made as efficient as
possible. There is a crucial distinction here also between the definite case, which
works with quadratic forms, and the harder indefinite case which works by finding
explicit generators for ideals.

1.2.14. pMatrixRing. Given a place p of ZF where B splits, determine an isomor-
phism B →M2(Fp) that sends the order O to a standard form at that prime, such
as the usual upper triangular representation in the case of Eichler orders. [Voi13]
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1.2.15. Predicates. Once orders are implemented, it should be both easy and highly
beneficial to have some of the basic predicates implemented. Some examples follow.

• IsMaximal

• IsEichler

• IsHereditary

• IsPrimitive

• IsBass

• IsGorenstein

• IsSelective

1.3. Ideals and lattices. Given a lattice I and an order O in B, we say that I
is a left (resp. right) O-ideal if OI = I (resp. IO = I). Every lattice is an ideal
for some order O; the biggest O for which OI = I (resp. IO = I) is called the left
(resp. right) order of I.

Given an order O, one often uses the set Cl(O) of (left or right) ideals of O up
to principal ideals; two ideals I and I ′ are in the same left (resp. right) ideal class
if and only if I ′ = Ib (resp. I ′ = bI) for some b ∈ B.

1.3.1. Basic operations. Given two ideals I1, I2 and an element b of B, determine
the join I1 + I2, the meet I1 ∩ I2, the colon lattice (I1 : I2), the quotient I1/I2 if
it exists, the scalar multiplication bI1, the conjugate ideal I, and the inverse ideal
I−1. Determine the left and right order of I1.

1.3.2. Morphisms. Implement a class of morphisms for lattices.

1.3.3. Isomorphism testing. Determine whether or not two lattices are isomorphic,
i.e., related by a conjugation, by using ternary quadratic forms if necessary. Algo-
rithms are completely different in the definite vs. indefinite case [Pag14].

1.3.4. Principality. Determine whether a given O-ideal I is (narrowly) principal,
and if so, determine a generator. Combined with local splitting, this is especially
relevant for ideals of Eichler orders, whose localizations are always principal.

1.3.5. Ideal class enumeration. Given an order O, enumerate its (left, right or two-
sided) ideal classes. [KV10]

1.3.6. Pic of O. It would be beneficial to have implemented the stably free class
group K0(O) of an order O.

1.3.7. Ideal class representatives. Given an ideal class and a prime ` not dividing
the discriminant, determine a representative ideal I whose norm is a power of `
[KLPT14].

1.3.8. General generators. For general ideals I, find a 2-generating set, consisting
of a norm in ZF and an element of B generating away from the primes dividing the
specified norm.

1.3.9. Bases. Given an ideal I, determine a (pseudo-)basis, as well as an LLL-
reduced basis for efficiency purposes.

1.3.10. Subideals. Given an O-ideal I and a suborder O′ of O, determine those
ideals I ′ of O′ such that OI ′ = I. More generally, if we have a class of morphisms
implemented, there should be functionality for pushforward and pullback of ideals.
Nicolás Sirolli has some code for this.
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1.3.11. Elements of norm. Given a bound B and an ideal I, find the elements of
norm up to B (up to the units of I).

1.3.12. Actions. Given an order O over a base R, determine the action of Cl(R) on
Cl(O).

1.3.13. Theta series. Given an ideal I, compute its theta series.

1.4. S-Units. Given a cofinite set of places S, one is interested in determining the
structures of the finitely generated groups associated with an S-integral order O.
Think of the groups O×1 (elements of norm 1), O×+/Z×F (elements of totally positive

norm modulo scalars), as well as the elements N(O)×+/F
× in the normalizer of the

latter group.

1.4.1. Presentation. Given a unit group U , return a presentation in terms of gen-
erators and relations. Perhaps this could be done through a package like GAP.

1.4.2. Word problem. Given a unit group U with a presentation and an element
u of U , determine an expression for u as a word in the generators. (Using the
fundamental domain mentioned below for example.)

1.4.3. Hyperbolic geometry. Implement the Poincaré disk / upper half plane and its
geometry, as well as the corresponding generalizations in higher dimension. There
is a library CGAL that is very nice and relevant to this, and has a compatible
license.

1.4.4. Signature. Given a unit group U acting on an hyperbolic space H, determine
the signature of the orbifold H/U . Related (also with the mass formula above):
Determine the covolume of U .

1.4.5. Fundamental domains. Given a unit group U acting on an hyperbolic space
H, determine a fundamental domain. (This gets harder and harder as the degree
of the field and the number of split places increases.)

1.4.6. Bruhat-Tits theory. The p-adic version of the complex analytic theory above;
develop functionality for actions on the Bruhat-Tits tree and consider the corre-
sponding Mumford curves etc.. [FM14]

1.5. Modular forms. What it is in the end all about; applications to modular
forms and systems of Hecke eigenvalues.

1.5.1. Brandt modules. Give an implementation of (abstract) Brandt modules of
arbitrary character and weight, after Kohel et al.. In particular, an implementation
of Brandt modules with a compatible representation theory package

1.5.2. Atkin-Lehner operators. Determine the action of the Atkin-Lehner opera-
tors N(O)×+F

×/O×+F× on Brandt modules. After choosing a basis, this action is
represented by Brandt matrices.

1.5.3. Actions on cohomology. Generalize the previous item to compute actions of
Atkin-Lehner and Hecke operators on the cohomologies associated with quater-
nionic groups.
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1.5.4. Relations with arithmetic geometry. We have now come full circle as appli-
cations to arithmetic geometry are a strong motivation for “thinking quaternioni-
cally.”

2. How to develop this functionality: Logistics

We first recount a discussion, conducted about the logistics of Sage; in other
words, who will code what needs to be coded? This is a discussion which needs
to take place because tenured staff do not have many opportunities to implement
algorithms. There is much teaching pressure, and usually one resorts to sabbaticals
or periods of unpaid leave.

This is an especially salient point for the implementation of quaternions because
there is quite a lot of quaternion arithmetic implemented in MAGMA, and reimple-
menting a piece of software is often more onerous than figuring out how things go
for the first time. The obvious choice is to have young people do so, in addition to
coding they can learn about the surrounding mathematical objects in a very deep
way.

In enlisting young mathematicians for this work however, some care must be
taken. Graduate students also often have teaching commitments and of course their
first priority is to complete their thesis. It was noted that coding projects assigned
to graduate students should be consonant with their research goals. However, there
is only a certain extent to which this can be true. Efficiency is a key factor here
and there is usually significant time to be invested in somewhat unpleasant running
time issues.

A key example which was brought up many times was the contrast of Brandt
Modules versus that of Hermite normal form for modules over a Dedekind domain.
Although the former is mathematically substantial and a student would learn much
from coding it, any code robust enough to work over a number field with nontrivial
class group would require a working copy of the latter. Many pieces of code are like
the former and all those would benefit from having an indispensable piece of code
like HNF working as efficiently as possible.

Although that graduate students will work hard for the sake of getting better
at computational algebraic number theory, there needs to be some enticement to
spend time on coding the essentials instead of on teaching or other graduate student
requirements. There is great benefit to having a group of graduate students all
working together, although there is the question of where the money to replace
teaching with coding would come from.

The ideal that our group came upon was that of a “Sage development fellowship”
wherein 5-10 graduate students could have their teaching bought out in order to
code and 3-5 postdoctoral fellows could be kept onboard to maintain a general
view and infrastructure. An alternative is also suggested by the recent Google
“Summer of Code,” in which five students were sponsored to write code over the
summer. Graduate students in need of summer support would be well-served by
such a program, although it should be noted that there will be competition from
industry during the summer for mathematics graduate students who can code and
stipends should reflect that.
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3. How to develop this functionality: Structure

We have thus far discussed what needs to be implemented and who should do
it. We now come to the crucial question of how this should be done. In particular,
we’ve singled out the following projects as being most important to be done in the
next few months.

3.1. The next few months to a year.

(1) Basic operations on ideals and lattices: this includes the creation of a
QuaternionLattice class, which has been begun at this conference. In
particular, until a fast implementation is given for Hermite normal forms,
the concentration is on working over rings of integers of number fields with
trivial class group. In this case, we can use existing infrastructure for
torsion-free modules over Principal Ideal Domains. For the future we can
install NotImplementedErrors.

(2) pMatrixRing: Given an order, it is vital to able to test its isomorphism
class. This project was frequently brought up as an excellent candidate for
something that a graduate student could learn a lot from coding.

(3) Isomorphism testing of ideals and lattice: This is another piece of basic
functionality which needs to be built into the QuaternionLattice package.
This will allow us to enumerate a complete set of representatives for the
class group of an order O.

(4) Optimized Class Representatives: When we can compute a complete list of
inequivalent ideals for an order O, the next crucial step is to find optimized
representatives for the isomorphism classes.
• All of the above can be done over rings of integers of class number

one fields. It is even conceivable that over such fields, there may be
a speed increase over other implementations. It is possible that one
might be able to implement something which works for free modules
over Dedekind domains, but at that point we’re just putting off a very
important enhancement.

(5) Fast Hermite Normal Form: This is necessary to anything going forward
over number fields. It is also worth noting here that there is an imple-
mentation of this in PARI which could be wrapped, although the code is
somewhat old. That said, there did seem to be some interest on the part
of the PARI team in improving that part of the code.
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