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1 Preliminaries

Here X will denote a smooth curve of genus g (that is, isomorphic to its own
Riemann Surface).

Rather than constantly talking about linear equivalence of divisors, we will
always talk about line bundles. Recall that to a divisor D we may associate a
line bundle ∆ whose space of global sections H0(∆) is isomorphic to L(D). We
denote the dimension of H0(∆) by h0(∆). If f ∈ M(X) then D + div(f) also
gives ∆. There is a group isomorphism between divisors up to linear equivalence
under addition and line bundles up to isomorphism under tensor product ⊗. We
denote the group of line bundles under tensor product by Pic(X).

We can define the degree of a line bundle by the degree of any underlying
divisor since principal divisors have degree zero.

Example 1.
The holomorphic 1-forms on X form a line bundle ωX which we call the

canonical bundle. The degree of this line bundle is 2g − 2 (since the degree of
any canonical divisor is 2g − 2).

•

When we speak about the Jacobian J(X), we talk about line bundles of
degree zero. These form a group under tensor product and the identity is the
trivial bundle OX .

Facts about J(X) can be found in Mumford’s Abelian Varieties [4], we will
use these two facts:

1) The n-torsion in J(X), that is, the line bundles L such that L⊗n ∼= OX

is denoted J(X)[n]. Since it is n-torsion, it is a Z/nZ module, and it is free of
rank 2g.

2) There is a canonical nondegenerate alternating bilinear pairing

en : J(X)[n]× J(X)[n]→ µn

(the n-th roots of unity). How this pairing is defined is not so important, we
only note that there is a canonical one. Here nondegenerate means that if we
fix v ∈ J(X)[n] and find that en(v, w) = 1 for all w ∈ J(X)[n] then v ∼= OX .
Equivalently, the map J(X)[n] → Hom(J(X)[n],Z/nZ) by v 7→ en(v, ·) is an
isomorphism.

Definition. If ϑ ∈ Pic(X) is such that ϑ⊗2 ∼= ωX , we say that ϑ is a theta
characteristic on X. We furthermore say that it is odd or even according to
h0(ϑ).

Theorem. The set TC(X) of theta characteristics on X is in bijection with
J(X)[2], the 2-torsion in the jacobian of X. More precisely, for each theta

1



characteristic ϑ on X, there is a bijective map of sets φϑ : TC(X) → J(X)[2]
where ϑ′ 7→ ϑ′ ⊗ ϑ−1.

Proof. Note first that we have a map of the prescribed sets. If ϑ′ is any theta
characteristic then (ϑ′ ⊗ ϑ−1)⊗2 ∼= ϑ′⊗2 ⊗ (ϑ⊗2)−1 ∼= ωX ⊗ ω−1

X
∼= OX .

This map is onto because if v ∈ J(X)[2] then (v ⊗ ϑ)⊗2 ∼= OX ⊗ ωX
∼= ωX

and so v ∼= φϑ(v ⊗ ϑ). Finally this map is 1 − 1 since it is just restriction of a
translation map on Pic(X) to TC(X).

Note that this is an entirely non-canonical bijection (i.e. it depends very
explicitly on being given a theta characteristic), so it only allows us to discover
information in the category of sets: for instance that there are #J(X)[2] = 22g

theta characteristics on X. For better information, we need a better identifica-
tion.

As we saw in class, the derivative of the Abel-Jacobi map X → J(X) is the
canonical embedding X → Pg−1 and that the set Wg−1 in Picg−1(X) forms a
divisor. We can use the map φϑ to push Wg−1 into J(X) as a symmetric theta
divisor. Combining these two viewpoints, an odd theta characteristic takes on
the meaning of a hyperplane in Pg−1 bitangent to X. The geometric meaning of
an even theta characteristic is more subtle, and Dolgachev’s Topics in Classical
Algebraic Geometry [1] is a suggested reference, as we will be concentrating on
the algebra for the remainder of this note.

Moreover, symmetric divisors on abelian varieties such as the Jacobian can
be associated to quadratic functions in a natural way. See Polishchuk [6] for
more details on this.

2 Theta Characteristics and Quadratic Forms
on J(X)[2]

Definition. Let V be a vector space over a field k. A quadratic form is a map
q : V → k such that q(cv) = c2q(v) for any c ∈ k. Moreover, if we define the
map bq : V × V → k by bq(v, w) = q(v +w)− q(v)− q(w), we require that bq be
bilinear.

Example 2. qϑ(v) = h0(v ⊗ ϑ) + h0(ϑ) mod 2 is a quadratic form on J(X)[2].
Scalar multiplication follows trivially because qϑ(0v) = h0(ϑ) + h0(ϑ) ≡ 0 =
02q(v) mod 2 for all v and likewise for 1.

It is a deep deformation-theoretic result of Mumford that that

bϑ(v, w) = h0(v ⊗ w ⊗ ϑ) + h0(v ⊗ ϑ) + h0(w ⊗ ϑ) + h0(ϑ) mod 2

is a bilinear form. Thus we have a quadratic form on the Z/2Z vector space
J(X)[2]. But much more is in fact true!

•
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Theorem (Mumford). For all theta characteristics ϑ, we have the following
relation between the Weil Pairing e2 : J(X)[2]× J(X)[2]→ µ2 and the bilinear
form bϑ given by the equation

e2(v, w) = (−1)bϑ(v,w).

For this reason we will hereon write 〈, 〉 for bϑ(, ).
We see that of particular interest to us will be determining what quadratic

forms have the same bilinear form. So let us suppose that q, q′ are quadratic
forms such that bq = bq′ = B, thus

q(v + w)− q(v)− q(w) = B(v, w) = q′(v + w)− q′(v)− q′(w).

This of course tells us that

(q − q′)(v + w) := q(v + w)− q′(v + w)
= q(v)− q′(v) + q(w)− q′(w)
= (q − q′)(v) + (q − q′)(w).

It’s tempting to say this means that q − q′ is linear on V , but scalars pull
out of q − q′ by squaring, as with any quadratic form. We do however say that
such a form is additive. Hence, we say in general that q and q′ have the same
bilinear form if and only if their difference is additive.

If ϑ, ϑ′ are two theta characteristics then qϑ(v)−qϑ′(v) = a(v) for a function
a : J(X)[2] → Z/2Z such that a(v + w) = a(v) + a(w) and a(cv) = c2a(v).
However, if c ∈ Z/2Z, it is well known that c2 = c. Thus a is actually a
linear map, and so there exists some η ∈ J(X)[2] such that a(v) = 〈v, η〉 for all
v ∈ J(X)[2].

But we know more. Since qϑ(v) = h0(v ⊗ ϑ) + h0(ϑ),we have

qϑ′(v)− qϑ(v) = h0(v ⊗ ϑ′) + h0(ϑ′) + h0(v ⊗ ϑ) + h0(ϑ)
= h0(v ⊗ ϑ′ ⊗ ϑ−1 ⊗ ϑ) + h0(ϑ′ ⊗ ϑ−1 ⊗ ϑ) + h0(v ⊗ ϑ) + h0(ϑ)
= h0((v ⊗ ϑ′ ⊗ ϑ−1)⊗ ϑ) + h0((ϑ′ ⊗ ϑ−1)⊗ ϑ) + h0(v ⊗ ϑ) + h0(ϑ)
= 〈v, ϑ′ ⊗ ϑ−1〉

Note that we use the fact we showed earlier, that ϑ′ ⊗ ϑ−1 is a 2-torsion
point in J(X). In fact, we see this respects the earlier bijection since qϑ+v(w) =
qϑ(w) + 〈w, v〉. We can now prove the aim of this section.

Theorem. The map ϑ  qϑ is a canonical bijection between TC(X) and the
quadratic forms on J(X)[2] whose bilinear form is 〈, 〉
Proof. The identification ϑ qϑ is injective because if qϑ′ − qϑ = 〈·, ϑ′ ⊗ ϑ−1〉
were constantly zero then the non degeneracy condition would show that ϑ′ ⊗
ϑ−1 ∼= OX . But this is of course equivalent to ϑ′ ∼= ϑ. Surjectivity then follows
from the fact that q − q′ = 〈·, η〉 for some η in the 2g-dimensional vector space
J(X)[2]. Thus we are embedding a 2g dimensional space into a 2g dimensional
space, so ϑ qϑ is a surjection.

Now we use this identification to derive some facts about theta characteris-
tics.
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3 Intrinsic information about theta characteris-
tics

Let us recall some facts about quadratic forms over a field k of characteristic
2. Let q be a quadratic form on a vector space V/k. And not yet assume the
characteristic of k is 2.

We note that bq(v, v) = q(2v) − 2q(v) = 4q(v) − 2q(v) = 2q(v), so we can
recover the quadratic form from its bilinear form precisely when the character-
istic of k is not 2. In the case of characteristic 2, we note that for any quadratic
form q, bq(v, v) = 0 so it is alternating or symplectic.

Now we note that Z/2Z is certainly a field of characteristic 2, so (J(X)[2], 〈, 〉)
is a ”symplectic space”. A classical theorem about symplectic spaces follows.

Theorem. A nondegenerate symplectic space is always even dimensional. More-
over, all symplectic spaces of dimension 2g are isomorphic to the space V = k2g

with basis e1, . . . , eg, f1, . . . , fg such that the matrix for V → V ∨ with respect to

that basis (and dual basis) given by v 7→ 〈·, v〉 is
(

0g Ig
−Ig 0g

)
Proof. http://www.math.harvard.edu/~elkies/M55a.99/pfaff.html

Note that Elkies is being careful enough to work over any field.

We call such a basis a symplectic basis. Using this basis, we make the
following definition:

Definition. If q is a non degenerate quadratic form over a Z/2Z vector space
V and {e1, . . . , eg, f1, . . . , fg} is a symplectic basis for V with respect to bq then
we define the Arf invariant as

Arf(q) =
g∑

i=1

q(ei)q(fi)

Remark. The Arf invariant can apparently be defined in a coordinate-free way.
With q we can define the Clifford algebra C(q) = T •V/〈x⊗x = q(x)〉. Within the
Clifford algebra is the even Clifford algebra C0(q) made up of the tensor product
of an even number of vectors. The even part of the center is a 2-dimensional
separable algebra, which is of the form k[T ]/(T 2 − T −Arf(q)). Here k = Z/2Z
but it should be clear how to generalize this to perfect fields of characteristic 2.

Theorem. The Arf invariant is independent of the choice of symplectic basis.
Moreover Arf(q + 〈v, ·〉) = Arf(q) + q(v)

Proof. For the proof that it is invariant of the sympletic basis, see Gross-Harris
[3]. Once we have established that, it suffices to pick a symplectic basis such
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that e1 = v. It follows then that

Arf(q + 〈e1, ·〉) =
g∑

i=1

(q(ei) + 〈e1, ei〉)(q(fi) + 〈e1, fi〉)

=

(
g∑

i=1

q(ei)q(fi)

)
+ q(e1)〈e1, f1〉

= Arf(q) + q(e1) = Arf(q) + q(v)

Corollary. On a non degenerate symplectic space (V, 〈, 〉) of dimension 2g,
# Arf−1(0) = 2g−1(2g + 1) and # Arf−1(1) = 2g−1(2g − 1)

Proof. Start with a symplectic basis {e1, . . . , eg, f1, . . . , fg}. We wish to define
q0 such that

q0(
g∑

i=1

αiei + βifi) =
g∑

i=1

αiβi.

We note that

q0(c
g∑

i=1

αiei + βifi) =
g∑

i=1

cαicβi = c2
g∑

i=1

αiβi

while

bq0(
g∑

i=1

αiei + βifi,

g∑
i=1

α′iei + β′ifi) =
g∑

i=1

α′iβi +
g∑

i=1

αiβ
′
i.

Thus it is clear by checking on the given symplectic basis that q0 is a
quadratic form on V with bilinear form 〈, 〉. The purpose of this form is that
it’s been cooked up to have Arf invariant zero. Therefore by the theorem above,
the forms of Arf invariant zero are exactly those of the form q0 + 〈v, ·〉 such that
q0(v) = 0. We are thus reduced to counting the zeros of this form. If g = 0,
V = 0 and q0 is identically zero. If g = 1 there is exactly 1 = 21−1(21 − 1) vec-
tor on which q0 is nonzero. If it’s true for g, then for V of dimension 2(g + 1),
there are exactly 2g−1(2g − 1) vectors with αg+1 = βg+1 = 0 which q0 sends
to 1. This will not change if αg+1 = 0, βg+1 = 1 or vice versa. This gives us
3(2g−1(2g − 1) vectors sent to 1. On the other hand if we want vectors with
αg+1 = βg+1 = 1 which are sent to 1, those are exactly the vectors which are
sent to zero in dimension g. There are exactly 2g−1(2g + 1) of these, so in total
we have 2g−1(3(2g − 1) + (2g + 1)) = 2g−1(2g+2− 2) = 2g(2g+1− 1) vectors sent
to 1, proving the claim.

Now we connect these results back to our knowledge of theta characteristics:

Theorem. If ϑ is a theta characteristic, Arf(qϑ) = h0(ϑ) mod 2.
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Proof. This can be found in Polishchuk [6, Theorem 17.11]. It uses the fact that
for v ∈ J(X)[2], the mod 2 multiplicity on the divisor φϑ(Wg−1) = Wg−1⊗ϑ−1

at v is h0(v ⊗ ϑ).

Corollary. A curve X of genus g has precisely 2g−1(2g − 1) odd theta charac-
teristics and 2g−1(2g + 1) even theta characteristics.

Let’s conclude with a discussion about why this might be interesting to
someone who, like myself, works over non-algebraically closed fields.

4 Rational Points and Maps to projective space

We begin with perhaps the hardest question in the history of mathematics:
When does a set of Diophantine equations (that is, polynomials over the

integers set equal to zero) have an integer solution(which we will hereon call a
“rational point”)?

Throughout the ages, many people have asked this question. Most notable
among them is Hilbert who asked the following as the 10th of his famous 23
problems in 1900.

Question. Given a set of Diophantine Equations, is there an algorithm to find
a rational point?

This answer is no in general [2]. To this day, this is an extremely hard ques-
tion and the study is mainly geared towards finding cohomological obstructions
to rational points. Producing them is in general very hard.

A related question is what degree of a field extension you need to produce
rational points, and for what degrees d can you get a rational point over infinitely
many fields of degree d?

One way to approach this is to use the equations to define a variety. If the
resulting variety is a curve C, we have a canonical convenient way to provide an
upper bound to d. A curve can be normalized (the same process as obtaining the
Riemann Surface over the complex numbers) to a smooth (well, at least regular,
but let’s not dwell on this) curve X. This is enough to admit a canonical bundle,
which is always rational. Therefore we always have a rational map X → Pg−1 of
degree 2g − 2. We know that over any field, Pg−1 has infinitely rational points
and the pullback of any of these will produce a divisor of degree 2g − 2. Hence
there are infinitely many rational points that can be produced over a field of
degree at most 2g − 2 (not the same field though!).

Now: can we sharpen this? One avenue explored by Shahed Sharif [7] is to
ask about maps of degree g − 1 given by rational theta characteristics. Notice
that although you always have theta characteristics over C, it might not be so
over a smaller field, and I’ve tried to write these notes with a certain sensitiv-
ity to that. In particular, the rational theta characteristics will be in setwise
bijection with the rational points of J(X)[2].
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