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Chapter 1

Introduction

Given a, b ∈Q×, define the quaternion algebra (a,bQ ) to be the set of all x + yi + zj +wk with

x, y, z,w ∈Q such that i2 = a, j2 = b, and ij = −ji = k.

It can be shown that if B is a quaternion algebra, then for all but finitely many primes

p, B ⊗Q Qp ≅ M2(Qp). Call the product of these finitely many primes D. If D = 1, then

B ≅M2(Q) and D is the product of an even number of primes if and only if there exists an

embedding ψ ∶ B ↪M2(R). For special Z-sublattices O of B called Eichler orders, we may

form the Shimura curve ψ(O1)/H∗ where O1 is the inverse image of SL2(R) under ψ in O

and H∗ is either the upper half-plane H of complex analysis if D ≠ 1 or H ∪ P1(Q) ⊂ P1(C)

if D = 1.

Given any integer N ≥ 1 which we call the level, consider the following example. In the

quaternion algebra (1,1
Q ) ≅M2(Q) we have the Eichler order

O0(N) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

Nc d

⎞
⎟⎟
⎠
∶ a, b, c, d ∈ Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

The Shimura curve O0(N)1/H∗ is the classical modular curve X0(N)C, the geometric

object which gives rise to modular forms. We may generalize this construction from M2(Q)
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to an arbitrary quaternion algebra in M2(R) of discriminant D. Work of Shimura [Shi71]

shows that this XD
0 (N)C may be given the structure of a variety over Q. Shimura also

showed that XD
0 (N)Q(Q) is non-empty if and only if D = 1, i.e., XD

0 (N) =X0(N).

While there is a sense in which the variety XD
0 (N) is canonical, it is not unique. We

understand the non-uniqueness using the following language.

Definition 1.0.1. By a twist of a variety V/Q, we will mean a variety V ′
/Q which is iso-

morphic to V over an extension field K. If [K ∶ Q] = 2 and ω is an automorphism of V/Q,

we may uniquely define the twist of V by ω and K. [Cla07]

The curve XD
0 (N)/Q comes naturally equipped with a group W = {wm ∶ m∣DN} of Q-

rational automorphisms such that w2
m = 1 called the Atkin-Lehner group. As an example, if

D = 1, then the action of the Fricke involution wN is usually given as the action on H by

the map z ↦ −1
Nz . We use the phrase Atkin-Lehner Twist to denote a twist of XD

0 (N)/Q by

an Atkin-Lehner involution and a quadratic field K which we fix for the remainder of the

introduction. Conjecturally [KR08], for all but finitely manyD and N ,W = AutC(XD
0 (N)C)

and thus any quadratic twist is an Atkin-Lehner twist.

This thesis is concerned with determining the rational points of Atkin-Lehner twists of

Shimura curves. To someone familiar with the theory of elliptic curves, it may be strange to

talk at such length about the presence or absence of rational points on quadratic twists. The

reader should however be cautioned that even genus one curves may possess involutions ω

where it may be difficult to determine if a twist by ω has rational points as in the following

example.

Example 1.0.2. It can be shown [GR06] that if D = 14 and N = 1 then XD
0 (N)Q can be

given by the affine equation

y2 = −x4 + 13x2 − 128.

Moreover the action of w14 is (x, y) ↦ (x,−y), and so the twist by w14 and Q(
√
d) has
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rational points if d is a value of −x4 + 13x2 − 128 ∈ Z[x]. However, the action of w2 is

(x, y) ↦ (−x, y) and therefore the twist of XD
0 (N) by w2 and Q(

√
d) is given by

y2 = −d2x4 + 13dx2 − 128.

It is a difficult question to determine for which d this twist has rational points.

Note that in the case D = 14 and N = 1 we have an explicit equation for XD
0 (N) because

it is hyperelliptic. It turns out that unless D = 1 or XD
0 (N) is hyperelliptic, there are no

known or conjectured equations for XD
0 (N) [Mol10, p.4]. Therefore we need to use different

techniques.

In chapter 4, we begin by exploring some basics of quaternion arithmetic needed for a

systematic study of Shimura curves. The topics include orders, ideals, ideal classes, embed-

dings of quadratic orders and others. Towards the end we will introduce some novel theorems

on the simultaneous embeddings of imaginary quadratic orders into Eichler orders in definite

quaternion algebras.

In chapter 5, we give the definition of a Shimura curve as a coarse moduli scheme. To

do so, we will review some background on abelian schemes, especially abelian schemes with

“large” endomorphism algebras. After giving a proper definition of a Shimura curve, we

will describe certain well-known models of Shimura curves. Finally, we will study the direct

relation yielded by Ribet’s bimodules between the arithmetic of certain abelian schemes and

the arithmetic of quaternion algebras.

Chapter 6 is where we first study rational points on twists of Shimura curves. That is, if

p is a prime not dividing DN which is unramified in a quadratic field K, we determine when

XD
0 (N)(Qp) is nonempty. The relevant techniques used here are Shimura’s zeta function,

Eichler’s trace formula, and Ribet’s bimodules.

In chapter 7, we study p-adic points on Atkin Lehner twists when p is ramified in K.

5



As a Zp-regular model for these twists was not previously known, we construct one in this

chapter. We then determine the Fp-rational points using either the Serre-Tate canonical lift

of an ordinary abelian variety or the theorems of chapter 4 on simultaneous embeddings.

We then apply Hensel’s Lemma to obtain our results. If we combine these results with the

results of Ekin Ozman [Ozm09], we obtain congruence conditions for the splitting modulo p

of Hilbert Class Polynomials.

In chapter 8, we study p-adic points on Atkin Lehner twists when p∣N is unramified in

K. We also obtain criteria for p-adic points on XD
0 (N) when p∣N , and no criteria seemed to

be known beforehand. The relevant techniques here are Ribet’s bimodules and the theorems

on simultaneous embeddings in chapter 4.

In chapter 9, we study p-adic points on Atkin Lehner twists when p∣D is unramified

in K. We also give a new proof of the criteria for p-adic points on XD
0 (N) when p∣D, as

determined by Jordan-Livné [JL85] and Ogg [Ogg85]. The relevant techniques here are once

again Ribet’s bimodules and the theorems on simultaneous embeddings in chapter 4.

The theorems of these chapters comprehensively determine the local behavior of these

twisted Shimura curves and are thus too long to state in an introduction. We now pro-

vide explicit examples of families of Shimura curves which have local points everywhere to

illustrate this.

Example (9.2.4). Suppose that q is an odd prime and consider X2q
0 (1)/Q, a curve of genus

g. Note that this curve is hyperelliptic over Q if and only if q is one of the following primes

{13,19,29,31,37,43,47,67,73,97,103}[Ogg83, Theorem 7]. Let p ≡ 3 mod 8 be a prime such

that (−pq ) = −1 and such that for all odd primes ` less than 4g2, (−p
`
) = −1. Let the twist

of X2q
0 (1) by Q(√−p) and w2q be denoted by C2q(1,−p,2q)/Q. Then C2q(1,−p,2q) has Qv-

rational points for all places v of Q.

If q = 13, then the genus of X26
0 (1) is two. Therefore X26

0 (1) is hyperelliptic, and has the
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following explicit model, where w2q is identified with the hyperelliptic involution [GR04]:

y2 = −2x6 + 19x4 − 24x2 − 169.

Hence, an explicit model for C26(1,−p,2q) is given by the affine equation

y2 = 2px6 − 19px4 + 24px2 + 169p.

The primes less than 2000 satisfying the congruence conditions in the above example are

p = 67,163, and 1747. It can be checked that the explicit model of C26(1,−67,26) has at

least the rational points (±9
5 ,

±10988
125

) , and that C26(1,−163,26) has at least the rational points

(±67
35 ,

±5270116
42875

) . If p = 1747, a point search in sage [S+12] failed to produce any rational points

and the TwoCoverDescent command in MAGMA did not determine if C26(1,−1747,26) has no

rational points.

Example (8.2.7). Let q ≡ 3 mod 4 be a prime and consider the curve X0(q)/Q. Let p ≡

1 mod 4 be a prime such that (pq) = −1 and let C1(q, p, q)/Q denote the twist of X0(q) by

Q(√p) and wq. Then C1(q, p, q) has Qv-rational points for all places v of Q.

If q = 23, the least two primes satisfying the above are p = 5 and p = 13. Using a

hyperelliptic model of the genus 2 curve X0(23) [GR91] as above, it can be verified that

C1(23,5,23)(Q) is nonempty. Meanwhile, the TwoCoverDescent command in MAGMA deter-

mined that C1(23,13,23)(Q) is empty.

Example 1.0.3. Let q ≡ 3 mod 4 be a prime. Let p be a prime such that (pq) = −1 and

p ≡ 1 mod 8. Let C1(2q, p,2q)/Q denote the twist of X1
0(2q)/Q by Q(√p) and w2q. Then

C1(2q, p,2q) has Qv-rational points for all places v of Q.

In chapter 10, we intensively explore Example 1.0.3 when q = 7. In particular, if we

assume a certain well-known conjecture, there are congruence classes of primes p such that
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the twist of X0(14) by w14 and Q(√p) not only has rational points, but is an elliptic curve

of rank one. We complete the chapter by conditionally re-deriving some of Shih’s results on

the inverse Galois problem. The relevant techniques are the results of the previous chapters

and the careful study of Selmer and Shafarevich-Tate groups.
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Chapter 2

Statements of Main Theorems

Throughout, D is a squarefree product of an even number of primes, N is a squarefree integer

coprime to D, m∣DN is a positive integer, and d is a squarefree integer. Moreover, XD
0 (N)

is a Shimura curve over Q and CD(N,d,m) is its twist by the automorphism wm and the

quadratic field Q(
√
d).

Corollary (6.3.2). If p ∤ DN is inert in Q(
√
d), CD(N,d,m)(Qp) is nonempty when

m =DN .

Theorem (7.0.1). Suppose that p ∤ 2DN is a prime which is ramified in Q(
√
d) and m∣DN .

Then CD(N,d,m)(Qp) ≠ ∅ if and only if one of the following occurs.

1. eD,N(−4m) ≠ 0, (−mp ) = 1, and H−4m(X) = 0 has a root modulo p

2. m ≡ 3 mod 4, eD,N(−m) ≠ 0, (−mp ) = 1, and H−m(X) = 0 has a root modulo p

3. m = DN , 2 ∤ D, (−DNp ) = −1, (−pq ) = −1 for all primes q ∣ D, and (−pq ) = 1 for all

primes q ∣ N such that q ≠ 2

4. m = DN/2, 2 ∣ N , (−DN/2
p ) = −1, (−pq ) = −1 for all primes q ∣ D, and (−pq ) = 1 for all

primes q ∣ N such that q ≠ 2
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5. m = DN , 2 ∣ D, p ≡ ±3 mod 8, (−DNp ) = −1, (−pq ) = −1 for all primes q ∣ (D/2), and

(−pq ) = 1 for all primes q ∣ N .

6. m =DN/2, 2 ∣D, DN ≡ 2,6, or 10 mod 16, p ≡ ±3 mod 8, (−DN/2
p ) = −1, (−pq ) = −1 for

all primes q ∣D, and (−pq ) = 1 for all primes q ∣ N .

Theorem (8.0.1). Let p ∣ N be unramified in Q(
√
d) and m ∣ DN . Then CD(N,d,m)(Qp)

is nonempty if and only if the conditions of (a) or (b) hold.

(a) p is split in Q(
√
d) and one of the following conditions holds.

• D = 1

• p = 2, D = ∏i pi with each pi ≡ 3 mod 4, and N/p = ∏j qj with each qj ≡ 1 mod 4

• p = 3, D = ∏i pi with each pi ≡ 2 mod 3, and N/p = ∏j qj with each qj ≡ 1 mod 3

• The following inequality holds

⌊2√p⌋

∑
0≠s=−⌊2√p⌋

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

> 0

(b) p is inert in Q(
√
d), and there are prime factorizations Dp = ∏i pi, N/p = ∏j qj such

that one of the following two conditions holds

(i) p ∣m, and one of the following two conditions holds.

• p = 2, m = p or DN , for all i, pi ≡ 3 mod 4, and for all j, qj ≡ 1 mod 4

• p ≡ 3 mod 4, m = p or 2p, for all i, pi /≡ 1 mod 4, and for all j, qj /≡ 3 mod 4

(ii) p ∤m and one of the following nine conditions holds.

• m =D = 1

• p = 2, m = 1, for all i, pi ≡ 3 mod 4, and for all j, qj ≡ 1 mod 4
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• p = 3, m = 1, for all i, pi ≡ 2 mod 3, and for all j, qj ≡ 1 mod 3

• p ≡ 3 mod 4, m =DN/2p, pi /≡ 1 mod 4 for all i, and qj /≡ 3 mod 4 for all j

• p ≡ 2 mod 3, m =DN/3p, pi /≡ 1 mod 3 for all i, and qj /≡ 2 mod 3 for all j

• m =DN/p, pi /≡ 1 mod 4 for all i, and qj /≡ 3 mod 4 for all j

• m =DN/p, pi /≡ 1 mod 3 for all i, and qj /≡ 2 mod 3 for all j

• mp /≡ 3 mod 4 and (p + 1) − tr(Tpm) > eDp,N/p(−4mp)
w(−4mp)

• mp ≡ 3 mod 4 and (p + 1) − tr(Tpm) > eDp,N/p(−mp)
w(−mp) + eD,N/p(−4mp)

w(−4mp)

Theorem (9.0.1). Suppose that p ∣ D is unramified in Q(
√
d) and m ∣ DN . Let pi, qj be

primes such that D/p = ∏i pi and N = ∏j qj.

• Suppose p is split in Q(
√
d). Then CD(N,d,m)(Qp) is nonempty if and only if one

of the following two cases occurs [Theorem 9.2.2].

1. p = 2, pi ≡ 3 mod 4 for all i, and qj ≡ 1 mod 4 for all j

2. p ≡ 1 mod 4, D = 2p, and N = 1

• Suppose that p is inert in Q(
√
d).

– If p ∣ m, CD(N,d,m)(Qp) is nonempty if and only if one of the following four

cases occurs.

1. m = p, pi /≡ 1 mod 3 for all i, and qj /≡ 2 mod 3 for all j [Lemma 9.1.3]

2. m = 2p and one of eD/p,N(−4) or eD/p,N(−8) is nonzero [Lemma 9.1.4]

3. m/p /≡ 3 mod 4 and eD/p,N(−4m/p) is nonzero [Lemma 9.1.4]

4. m/p ≡ 3 mod 4 and one of eD/p,N(−4m/p) or eD/p,N(−m/p) is nonzero [Lemma

9.1.4]
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– If p ∤ m, CD(N,d,m)(Qp) is nonempty if and only if one of the following four

cases occurs [Theorem 9.2.2].

1. p = 2, m = 1, pi ≡ 3 mod 4 for all i, and qj ≡ 1 mod 4 for all j

2. p ≡ 1 mod 4, m =DN/(2p), for all i, pi /≡ 1 mod 4, and for all j, qj /≡ 3 mod 4

3. p = 2, m =DN/2, pi ≡ 3 mod 4 for all i, and qj ≡ 1 mod 4 for all i

4. p ≡ 1 mod 4, m =DN/p, for all i, pi /≡ 1 mod 4, and for all j, qj /≡ 3 mod 4

Theorem (4.2.1). Fix square-free positive integers D′,N ′ such that (D′,N ′) = 1 and D′ is

the product of an odd number of primes. Fix also m > 1 such that m∣D′N ′. The following

are equivalent.

1. There is a definite quaternion algebra B′ over Q of discriminant D′, an Eichler order

O′ of level N ′ in B′ and elements ω1 and ω2 contained in O′ such that ω2
1 = −1 and

ω2
2 = −m.

2. There are factorizations D′ = ∏i pi and N ′ = ∏j qj into distinct primes such that

• m =D′N ′ or 2∣D′N ′ and m =D′N ′/2

• for all i either pi = 2 or pi ≡ 3 mod 4

• for all j either qj = 2 or qj ≡ 1 mod 4

Theorem (4.2.5). Fix squarefree positive integers D′,N ′ such that (D′,N ′) = 1 and D′ is

the product of an odd number of primes. Fix also m∣D′N ′ such that m > 1, m ≠ 3. The

following are equivalent

1. There is a definite quaternion algebra B′ of discriminant D′, an Eichler order O′ of

level N ′ in B′ and 1+ω1

2 , ω2 ∈ O′ such that ω2
1 = −3 and ω2

2 = −m.

2. There are factorizations D′ = ∏i pi, N ′ = ∏j qj into distinct primes such that

12



• m =D′N ′, or 3 ∣D′N ′ and m =D′N ′/3

• for all i either pi = 3 or pi ≡ 2 mod 3

• for all j either qj = 3 or qj ≡ 1 mod 3

Theorem (4.2.9). Let D be the squarefree product of an even number of primes, N a square-

free integer coprime to D, and p a prime not dividing DN . Let B′ = BDp and let m ∣DN be

an integer greater than one. We have the following equivalences.

1. Suppose that 2 ∤DNp. There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m = DN , (−pq ) = −1 for all

primes q ∣D, (−pq ) = 1 for all primes q ∣ N , and (−DNp ) = −1.

2. Suppose that 2 ∣ N . There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if one of the following two cases

occurs.

• m = DN , (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes q ∣ (N/2), and

(−DNp ) = −1

• m = DN/2, (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes q ∣ (N/2), and

(−DN/2
p ) = −1

3. Suppose 2 ∣ D and (−DNp ) = −1. There is an Eichler order O′ of level N in B′ and

embeddings ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m =DN , (−pq ) = −1

for all primes q ∣ (D/2), p /≡ 7 mod 8, and (−pq ) = 1 for all primes q ∣ N .

4. Suppose 2 ∣ D and (−DNp ) = 1. There is an Eichler order O′ of level N in B′ and

embeddings ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m = DN/2,

DN ≡ 2,6, or 10 mod 16, (−pq ) = −1 for all primes q ∣ (D/2), p /≡ 7 mod 8, and (−pq ) = 1

for all primes q ∣ N .
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5. Suppose that p = 2. There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m =DN ≡ ±3 mod 8, (−2

q ) = −1

for all primes q ∣D, and (−2
q ) = 1 for all primes q ∣ N .

Corollary (7.0.3). Let p ≠ 2 be a prime and let N be a squarefree integer such that (−Np ) = −1.

It follows that the Hilbert class polynomial H−4N(X) has a root modulo p if and only if for

all odd primes q ∣ N , (−pq ) = 1.

Theorem (10.0.1). Assuming Conjecture 10.4.1, if p is a prime congruent to one of 17,33 or

41 mod 56 then C1(14, p,14) has infinitely many Q-rational points, and in fact is an elliptic

curve of rank one over Q.
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Chapter 4

Quaternion Arithmetic

This chapter will give the background in quaternion arithmetic necessary to study Shimura

curves and their twists. Most of this material is not new and can be found in the papers and

books of Eichler [Eic73] and Vigneras [Vig80]. The new material in this chapter is found

in section 4.2, and concerns the question of simultaneous embeddings of quadratic orders

into Eichler orders of squarefree level in a definite rational quaternion algebra. These results

will be used in section 5.3 to control the arithmetic and geometry of so-called superspecial

surfaces. Theorems based upon Theorem 4.2.9 will in turn be used to prove results on

rational points in Chapter 7. Theorems based upon Theorem 4.2.1 and Theorem 4.2.5 will

be used to prove results on rational points in Chapters 8 and 9.

4.1 Basic definitions and theorems

Definition 4.1.1. A quaternion algebra over a field K is a four-dimensional central simple

K-algebra.

Example 4.1.2. If the characteristic of K is not 2, and a, b ∈K× then there is a quaternion

algebra over K which we denote (a,b
K

). This algebra has a K-basis ⟨1, i, j, k⟩ such that i2 = a,
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j2 = b and k = ij = −ji.

Definition 4.1.3. Let K be a number field. We say that a quaternion algebra B is ramified

at a place v of K if B ⊗K Kv is a division algebra.

Definition 4.1.4. If K =Q, we say that a quaternion algebra B is definite if B is ramified

at infinity. Likewise we say that B is indefinite if B is unramified at infinity.

It is well-known that if K is a number field, the quaternion algebras B are determined

up to isomorphism by the even number of places of K at which B ramifies [Mil11, Example

VIII.4.4(b)]. It follows that if K = Q, B is definite if and only if B is ramified at an odd

number of primes. Therefore we make the following definition.

Definition 4.1.5. Let D > 0 be a squarefree positive integer. Let BD denote the unique

quaternion Q-algebra such that BD is ramified at p if and only if p ∣ D. To any quaternion

Q-algebra, we associate its discriminant disc(B), the unique positive squarefree number such

that B ≅ Bdisc(B).

Definition 4.1.6. Let B be a quaternion K-algebra and let a↦ a denote the main involution

of B over K [Shi10, IV.20.6a]. Define the trace a↦ tr(a) = a + a and the norm N(a) = aa.

Definition 4.1.7. A Z-order O in a quaternion Q-algebra B is a rank four Z-subalgebra of

B such that for all θ ∈ O, tr(θ) ∈ Z and N(θ) ∈ Z.

Definition 4.1.8. The discriminant of a Z-order O with a Z-basis e1, . . . , e4, is disc(O) =

det(tr(eiej)).

Lemma 4.1.9. [Vig80, Corollaire I.4.8] If O1 ⊃ O2 then disc(O1) ∣ disc(O2). Moreover,

[O1 ∶ O2] =
√

∣disc(O2)
disc(O1) ∣ so if disc(O2) = disc(O1) then O1 = O2.

Definition 4.1.10. An order in a quaternion algebra will be called maximal if it is maximal

with respect to inclusion.
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Lemma 4.1.11. [Vig80, Corollaire II.5.3] An order O in a quaternion Q-algebra B is

maximal if and only if disc(B) =
√

∣ disc(O) ∣.

If an order O is contained in two maximal orders O1 and O2, then [O1 ∶ O] = [O2 ∶ O] by

Lemma 4.1.9.

Definition 4.1.12. A Z-order O ⊂ B is called an Eichler order when it is the intersection

of two (not necessarily distinct) maximal Z-orders. The level of an Eichler order is its index

in either maximal order.

Definition 4.1.13. By Lemma 4.1.9, if O is an Eichler order,
√

∣ disc(O) ∣ is a positive

integer, which we may sometimes refer to as the reduced discriminant.

Definition 4.1.14. Let Zp2 denote the unique irreducible unramified degree two ring exten-

sion of Zp.

Lemma 4.1.15. Let B be a quaternion Q-algebra ramified at p. Then B ⊗Qp has a unique

maximal Zp-order O. Moreover, there exists an element π ∈ B ⊗Qp such that π2O = pO and

O ≅ Zp2 ⊕ πZp2 . It follows that for a ∈ Zp2, πaπ−1 = σ(a) where ⟨σ⟩ = AutZp(Zp2).

Proof. The uniqueness of a maximal order for a division quaternion algebra over any local

field K and its structure as a ZK-module is well-known [Vig80, Corollaire II.1.7]. Since

O is unique, conjugation by π is an automorphism of O. In fact, conjugation by π is an

automorphism of Zp2 since πZp commutes with π. If π commuted with all of Zp2 , then O

and thus B would be commutative, a contradiction. Therefore conjugation by π induces the

unique non-identity element of AutZp(Zp2).

Hereon, we suppress the Z as all of our quaternion algebras will be over Q (or be the

base change of a quaternion algebra over Q).

Lemma 4.1.16. [Vig80, Lemme II.2.4], [Vig80, Corollaire III.5.2] Let B be a quaternion

Q-algebra and O an Eichler order of level N . If p ∤ disc(B), then there is an embedding
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O⊗Zp ↪M2(Zp). Moreover there is a unique integer n such that O⊗Zp is conjugate to an

order in M2(Zp) of the form
⎛
⎜⎜
⎝

Zp Zp

pnZp Zp

⎞
⎟⎟
⎠
.

We may explicitly give n as the non-negative integer such that pn ∣ N but pn+1 ∤ N .

Definition 4.1.17. We say that an order O is ramified at p if p ∣ disc(O).

Definition 4.1.18. [Eic73, p.17] Let B be a quaternion algebra over Q and O ⊂ B an order.

A left O-ideal is a left O-module M contained in B such that OM = M and for all primes

p of Q, there exist mp ∈ B such that Zp ⊗M = Zp ⊗ Omp. If M is a left O-ideal then we

call Or(M) ∶= {x ∈ B ∶ Mx ⊂ M} the right order of M . We say that M is two-sided if

O = Or(M). We may similarly define right ideals I and their left orders Ol(I).

Definition 4.1.19. Let B be a quaternion algebra and O ⊂ B an order. We say that a (left,

right or two-sided) O-ideal M is integral if M ⊂ O.

Definition 4.1.20. Let B be a quaternion algebra and O ⊂ B an order. We say a left O-ideal

M is principal if there is some m ∈ B such that M = Om, and similarly for right O-ideals.

Lemma 4.1.21. If B is indefinite and O is an Eichler order in B (of any level), then every

left (or right) O-ideal is principal. Therefore, the Eichler orders (of any given level) are

conjugate.

Proof. If B is indefinite, then {∞} satisfies the Eichler Condition [Vig80, Definition, p.81].

Therefore, the class number of O is the class number of Q [Vig80, Corollaire III.5.7(1)]. This

is to say, the class number of O is one. Then we note that the number of left (or right) ideals

up to isomorphism of an Eichler order (of any level) is at least the number of Eichler orders

(of that level) up to conjugation, and this can be made precise [Vig80, Lemme III.5.6].
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Lemma 4.1.22. If B is definite and O is an Eichler order in B then O× is finite. The

number of left (or right) ideals up to right (or left) multiplication by B× is finite.

Proof. In a maximal order there are only finitely many units [Vig80, Proposition V.3.1], and

any order is contained in a maximal order. The finiteness of left (or right) ideal classes is

true in broad generality. If F is a totally real field and B/F is a totally definite quaternion

algebra (which is to say that for all embeddings ε ∶ F → R, B ⊗ε R is division) and O is

an Eichler ZF -order of B then the left O-ideals up to B×-multiplication is finite [Vig80,

Corollaire V.2.3].

Lemma 4.1.23. [Eic73, Theorem II.1.1] Let B be a quaternion algebra of discriminant D.

If O is an Eichler order of square-free level N in B, then the two-sided ideals of O form

an abelian group under multiplication. For each prime p ∣ DN , there is a unique two-sided

integral ideal ℘p such that ℘2
p = Op = pO. Moreover, any two-sided ideal of O is equal to one

of the form

( ∏
p∣DN

℘εpp )r

where r ∈Q and εp ∈ {0,1}.

Definition 4.1.24. Let A be a finitely-generated, torsion-free Z-algebra, let A0 be A⊗ZQ and

let εA ∶ A → A0 be the natural embedding a ↦ a ⊗ 1. Suppose that there exists an embedding

φ ∶ A1 ↪ A2 of finitely generated torsion-free Z-algebras. Define φ0 ∶ A0
1 ↪ A0

2 to be the induced

embedding a⊗ r/s↦ φ(a) ⊗ r/s. We say that φ is optimal if εA1(A1) = (φ0)−1(εA2(A2)).

Let φ ∶ A1 ↪ A2 be an embedding of finitely generated torsion-free Z-algebras. Define

A′
1 ∶= (φ0)−1(εA2(A2)) and note that A′

1 is a finitely generated torsion-free Z-algebra. Note

also that A0
1 ⊃ A′

1 ⊃ A1 because φ0 induces an embedding A′
1 ↪ A2. Moreover, this embedding

is an optimal embedding ψ ∶ (φ0)−1(εA2(A2)) → A2.

We define optimal embeddings in order to study embeddings of quadratic orders into

quaternion orders. Namely, if R is an order in a quadratic number field K, then any em-
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bedding of R into a quaternion order O is optimal for some order R′ where K ⊃ R′ ⊃ R.

We shall see in Theorem 4.1.28 that there are strictly numerical criteria for optimal embed-

dings of quadratic orders into quaternion orders O, and so summing those conditions over

all K ⊃ R′ ⊃ R gives criteria for any embeddings of R into O.

Definition 4.1.25. Let ∆ be an integer which is congruent to zero or one modulo four.

We will denote by R∆ the unique quadratic order of discriminant ∆. If ∆ is not a square,

R∆ ⊗Q is a quadratic field K∆ = Q(
√

∆). In this case, we may define the class number

h(∆) ∶= # Pic(R∆) and the conductor f(∆) ∶= [ZK∆
∶ R∆]. We also fix w(∆) ∶= #R×

∆.

Definition 4.1.26. Let p be a prime, and let ( ⋅
p) denote the Kronecker symbol. That is, if p

is odd, the Kronecker symbol is the Legendre symbol. If p = 2 then (2
2) = 0 and if q is an odd

prime then ( q2) = (−1)(q2−1)/8. We obtain the Kronecker symbol by extending multiplicatively.

The Eichler symbol may then be defined in terms of the Kronecker symbol as follows:

{∆

p
} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 p ∣ f(∆)

(∆
p ) else

Definition 4.1.27. For square-free coprime integers D and N and some integer ∆ ≡ 0,1 mod

4, we define the quantity

eD,N(∆) ∶= h(∆)∏
p∣D

(1 − {∆

p
})∏

q∣N
(1 + {∆

p
}) .

Theorem 4.1.28 (Eichler’s embedding theorem). Let D and N be square-free coprime in-

tegers. If BD is indefinite, i.e. if an even number of primes divide D, then the number of

optimal embeddings of a quadratic order R of discriminant ∆ into some Eichler order O of

square-free level N in BD up to O× conjugacy is eD,N(∆). If BD is definite, i.e., if an odd

number of primes divide D, then the number of optimal embeddings of a quadratic order R of
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discriminant ∆ into some Eichler order O of square-free level N in BD up to O× conjugacy

is eD,N(∆)/w(∆).

Proof. This is proven separately in the indefinite case [Vig80, Corollaire III.5.12] and in the

definite case [Eic73, Proposition 5].

Corollary 4.1.29. If DN is square-free, Z[
√
−1] = Z[ζ4] embeds into an Eichler order of

level N in BD if and only if for all p ∣ D, p = 2 or p ≡ 3 mod 4, and for all q ∣ N , q = 2 or

q ≡ 1 mod 4.

Corollary 4.1.30. If DN is square-free, Z [1 +
√
−3

2
] = Z[ζ6] embeds into an Eichler order

of level N in BD if and only if for all p ∣ D, p = 3 or p ≡ 2 mod 3, and for all q ∣ N , q = 3 or

q ≡ 1 mod 3.

4.2 Simultaneous embeddings into Eichler orders

In the following section, we describe sone new results on embeddings of quadratic orders into

Eichler orders of definite quaternion algebras in the style of Brzezinski and Eichler [BE92].

These results will be useful in the remainder of the thesis.

Let B′ be a definite quaternion Q-algebra. Suppose that there exist ω1, ω2 ∈ B′ such that

ω2
1 = −q and ω2

2 = −d for q, d ∈ Z. Then clearly ω1ω2 ∈ B′ is of norm qd. Although ω1 and ω2 are

integral, it may be the case that ω1ω2 is not integral. We only know that tr(ω1ω2) < 4qd. In

order for ω1ω2 to be integral it is necessary and sufficient that tr(ω1ω2) = ω1ω2+ω2ω1 = s ∈ Z.

Now let us grant that tr(ω1ω2) ∈ Z. Since ω1, ω2, and ω1ω2 are integral, any order O′

that contains ω1 and ω2 contains ω1ω2. Note that the Z-module generated by 1, ω1, ω2 and

ω1ω2 is an order of B′ if and only if ⟨1, ω1, ω2, ω1ω2⟩ is a basis for B′ over Q.

In the latter case, we may compute that the reduced discriminant of Z⊕Zω1⊕Zω2⊕Zω1ω2
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is 4qd − s2. If q ≡ 3 mod 4,
1 + ω1

2
is integral and the reduced discriminant of

Z⊕Z
1 + ω1

2
⊕Zω2 ⊕Z

1 + ω1

2
ω2

is dq − ( s
2
)2
.

We now prove the following.

Theorem 4.2.1. Fix square-free positive integers D′,N ′ such that (D′,N ′) = 1 and D′ is

the product of an odd number of primes. Fix also m > 1 such that m∣D′N ′. The following

are equivalent.

1. There is a definite quaternion algebra B′ over Q of discriminant D′, an Eichler order

O′ of level N ′ in B′ and elements ω1 and ω2 contained in O′ such that ω2
1 = −1 and

ω2
2 = −m.

2. There are factorizations D′ = ∏i pi and N ′ = ∏j qj into distinct primes such that

• m =D′N ′ or 2∣D′N ′ and m =D′N ′/2

• for all i either pi = 2 or pi ≡ 3 mod 4

• for all j either qj = 2 or qj ≡ 1 mod 4

Proof. For (1) ⇒ (2), we know in the first place by Eichler’s Theorem on embeddings that

if Z[ζ4] ↪ O′ then pi = 2 or pi ≡ 3 mod 4 and qj = 2 or qj ≡ 1 mod 4. While a priori it may

seem that we could use Eichler’s theorem to narrow down the possible choices of m, it is

more profitable to directly use the knowledge that we have simultaneous embeddings and

conclude at the end that D′N ′ and (if possible) D′N ′/2 satisfy Eichler’s Theorem.

Since m > 1, Z[ζ4] /↪ Z[
√
−m] and vice versa. Therefore O′ ⊃ Z⊕Zω1⊕Zω2⊕Zω1ω2 and

so m ∣D′N ′ ∣ 4m − s2. If s = 0, we have m ∣D′N ′ ∣ 2m since D′N ′ is squarefree.
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If s ≠ 0, m ∣ 4m−s2 implies that m ∣ s and m ≤ ∣s∣. Since m2 ≤ s2 < 4m, we have m < 4 and

in fact m = 2 or m = 3. If m = 2 and 0 < s2 < 4m = 8 then m∣s implies that ∣s∣ = 2 and thus

2 ∣D′N ′ ∣ 4. Then D′N ′ square-free and D′ > 1 implies that m =D′ =D′N ′ = 2. If m = 3 and

0 < s2 < 4m = 12 then m ∣ s implies that ∣s∣ = 3 and thus 3 ∣D′N ′ ∣ 3 so m =D′ =D′N ′ = 3.

For (2) ⇒ (1), we may exclude the caseD′N ′ = 3 because the quaternion algebra (−1,−3

Q
)

of discriminant 3 has a unique maximal order.

Therefore it suffices to consider the quaternion algebra A = (−1,−D′N ′

Q
) which we take

for now to be generated by ω1 and ω2, fixing ω2
2 = −D′N ′ because if 2 ∣ D′N ′, (1 + ω1

2
)ω2

squares to −D′N ′/2.

We note first that under these conditions, A has discriminant D′. First we note that if p

does not divide D′N ′ then A splits over Qp because the Chevalley-Warning theorem [Ser73,

§I.2.2] tells us that a four variable quadratic form over a finite field is isotropic. Hence by

Hensel’s Lemma we are done. If p ∣ D′N ′ is an odd prime, then x2 + y2 represents p if and

only if p ≡ 1 mod 4 so again by Hensel’s Lemma, A does not split over Qp for p odd if and

only if p ∣ D′. Finally if 2 ∣ D′ then D′N ′/2 ≡ 1 mod 4 so D′N ′ ≡ 2 mod 8 and thus −D′N ′

is not a sum of two squares in Z/8Z. If 2 ∣ N ′, D′N ′/2 ≡ 3 mod 4 so D′N ′ ≡ 6 mod 8 and so

−D′N ′ is a sum of squares in Q2.

We now exhibit an explicit order O′ of level N ′.

If 2 ∤D′N ′ then D′N ′ ≡ 3 mod 4 and so
1 + ω2

2
is integral and so Z⊕Zω1 ⊕Z(1 + ω2

2
)⊕

Zω1 (
1 + ω2

2
) has reduced discriminant D′N ′.

If 2 ∣ D′N ′, let ω′2 = (1 + ω1

2
)ω2 then as before, the reduced discriminant of Z ⊕ Zω1 ⊕

Zω′2 ⊕Zω1ω′2 is 4D′N ′/2 = 2D′N ′. In this case, we consider the “Hurwitz quaternions”

Z⊕Zω1 ⊕Zω′2 ⊕Z
1 + ω1 + ω′2 + ω1ω′2

2

which have reduced discriminant D′N ′.
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We note that we gave a very explicit example of an order satisfying Theorem 4.2.1 (1) in

the proof above. An interesting fact is that such an order is unique up to B×-conjugacy.

Theorem 4.2.2 (Pizer). Let B′ be a definite Q-quaternion algebra and suppose that for all

p ∣ disc(B′), (−4

p
) = −1. Let N be a squarefree integer such that for all p ∣ N , (−4

p
) = 1.

Then there is a unique conjugacy class of Eichler orders of level N in B′ into which Z[ζ4]

embeds.

Similarly, suppose that for all p ∣ disc(B′), (−3

p
) = −1, and let N be a squarefree integer

such that for all p ∣ N , (−3

p
) = 1. Then there is a unique conjugacy class of Eichler orders

of level N in B′ into which Z[ζ6] embeds.

Proof. Let o be an order in an imaginary quadratic field. Recall the definition given by Pizer

[Piz76, Definition 11] of D(o) as the number of (B′)×-conjugacy classes of Eichler orders of

level N in B into which o is optimally embedded. During the proof of Theorem 16 on page

73 of the same article, it is proven that if o = Z[ζ4] then D(o) is zero or one depending on

whether or not there is an optimal embedding. Similarly on page 75 of the same article, the

same thing is proven for Z[ζ6].

Corollary 4.2.3. Let B′ be a definite quaternion algebra of discriminant D′, and let O′ be

an Eichler order of B′ of squarefree level N ′ such that Z[ζ4] ↪ O′. If m ∣ D′N ′ and m ≠ 1,

then Z[
√
−m] ↪ O′ if and only if m =D′N ′ or 2 ∣D′N ′ and m =D′N ′/2.

Proof. Since there exists some φ1 ∶ Z[ζ4] ↪ O′, O′ is unique up to B×-conjugacy. If there

exists some φ2 ∶ Z[
√
−m] ↪ O′ then let ω1 = φ1(ζ4) and ω2 = φ2(

√
−m). It follows that

O′ ⊃ Z⊕Zω1 ⊕Zω2 ⊕Zω1ω2 since m ≠ 1 and so neither quadratic order is contained in the

other. By Theorem 4.2.1, m =D′N ′ or D′N ′/2.

Suppose now that m = D′N ′ or D′N ′/2. By Theorem 4.2.1, there is some order S of

B′ admitting embeddings of both Z[ζ4] and Z[
√
−m]. Since S admits an embedding of
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Z[ζ4], it must be conjugate to O′ by Theorem 4.2.2 and thus O′ admits an embedding of

Z[
√
−m].

Corollary 4.2.4. When the conditions of Theorem 4.2.1 are satisfied, B′ ≅ (−1,−D′N ′

Q
)

and O′ is (B′)×-conjugate to one of the following:

1. The unique maximal order in B′ if D′ = 2 or 3.

2. Z⊕Zi⊕Z1+j
2 ⊕Z i+k

2 if 2 ∤D′N ′.

3. Z⊕Zi⊕Z j+k
2 ⊕Z (1+i

2 + j+k
4

) if 2 ∣D′N ′.

Moreover if 2 ∣D′N ′ we note that the order in 3. contains
j + k

2
, a square root of −D′N ′/2.

We now turn our attention to simultaneous embeddings of Z[ζ6] and Z[
√
−m].

Theorem 4.2.5. Fix squarefree positive integers D′,N ′ such that (D′,N ′) = 1 and D′ is the

product of an odd number of primes. Fix also m∣D′N ′ such that m > 1, m ≠ 3. The following

are equivalent

1. There is a definite quaternion algebra B′ of discriminant D′, an Eichler order O′ of

level N ′ in B′ and 1+ω1

2 , ω2 ∈ O′ such that ω2
1 = −3 and ω2

2 = −m.

2. There are factorizations D′ = ∏i pi, N ′ = ∏j qj into distinct primes such that

• m =D′N ′, or 3 ∣D′N ′ and m =D′N ′/3

• for all i either pi = 3 or pi ≡ 2 mod 3

• for all j either qj = 3 or qj ≡ 1 mod 3

Proof. To show that (1) implies (2), we note first by Eichler’s Theorem on embeddings that

if Z[ζ6] ↪ O′ then pi = 3 or pi ≡ 2 mod 3 and qj = 3 or qj ≡ 1 mod 3.
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Note that since m > 1 and m ≠ 3, Z[ζ6] /↪ Z[
√
−m] and vice versa. We know that since

O′ ⊃ Z ⊕ Z (1+ω1

2
) ⊕ Zω2 ⊕ Z (1+ω1

2
)ω2, m ∣ D′N ′ ∣ 3m − (s/2)2. If s = 0, we have the result

that m ∣D′N ′ ∣ 3m.

If s ≠ 0, m ∣ 3m − (s/2)2 implies that m ∣ (s/2) and m2 ≤ (s/2)2 < 3m so m = 2. If

0 < (s/2)2 < 6 and 2 ∣ (s/2) then s = 4 so m =D′ =D′N ′ = 2.

To show that (2) implies (1), we may exclude the case D′N ′ = 2 because the quaternion

algebra (−1,−1

Q
) of discriminant 2 has a unique maximal order. Therefore it suffices to

consider the quaternion algebra A = (−3,−D′N ′

Q
) which we take for now to be generated by

ω1 and ω2, fixing ω2
2 = −D′N ′ because if 3 ∣D′N ′, (ω1ω2)2 = −3D′N ′ so (1/3)ω1ω2 squares to

−D′N ′/3.

We note first that under these conditions, A has discriminant D′. First we note that if

p does not divide D′N ′ then A splits because the Chevalley-Warning theorem [Ser73, §I.2.2]

tells us that a four variable quadratic form over a finite field is isotropic. If p ∣ D′N ′ is an

odd prime, then x2 +3y2 represents p if and only if p ≡ 1 mod 3 or p = 3, and if 2 ∣D′, A does

not split because x2 + 3y2 is not isotropic over Q2.

We now exhibit an explicit order O′ of level N ′.

• If 3 ∣D′N ′ then ω′2 =
ω1

3
ω2 is such that (ω′2)2 +D′N ′/3 = 0 and so the reduced discrim-

inant of Z⊕Z
1 + ω1

2
⊕Zω′2 ⊕Z

1 + ω1

2
ω′2 is 3(D′N ′/3) =D′N ′.

• If 3 ∤ D′N ′, then D′N ′ ≡ −1 mod 3. Therefore we can show that α = Z
1 + ω1

2
, β =

1 + ω2

2
+ ω1 + ω1ω2

6
and γ = −3 + ω1 − 2ω1ω2

6
are all integral with N(α) = 1, N(β) =

N(γ) = D
′N ′ + 1

3
. It can thus be easily calculated that Z⊕Zα⊕Zβ ⊕Zγ is a suitable

Eichler order of level N ′ in A.

Corollary 4.2.6. Let B′ be a definite quaternion algebra of discriminant D′ and let O′ be

28



an Eichler order of B′ of squarefree level N ′ such that Z[ζ6] ↪ O′. If m ∣D′N ′ and m ≠ 1,3,

then Z[
√
−m] ↪ O′ if and only if m =D′N ′ or D′N ′/3.

Proof. Since there exists some φ1 ∶ Z[ζ6] ↪ O′, O′ is unique up to B×-conjugacy. If there

exists some φ2 ∶ Z[
√
−m] ↪ O′ then let ω1 = 2φ1(ζ6) − 1 and ω2 = φ2(

√
−m). It follows that

O′ ⊃ Z⊕Z1+ω1

2 ⊕Zω2 ⊕Z1+ω1

2 ω2 since m ≠ 1,3 and so neither quadratic order is contained in

the other. By Theorem 4.2.5, m =D′N ′ or D′N ′/3.

Suppose now that m = D′N ′ or D′N ′/3. By Theorem 4.2.5, there is some order S of

B′ admitting embeddings of both Z[ζ6] and Z[
√
−m]. Since S admits an embedding of

Z[ζ6], it must be conjugate to O′ by Theorem 4.2.2 and thus O′ admits an embedding of

Z[
√
−m].

Corollary 4.2.7. When the conditions of Theorem 4.2.5 are satisfied, B′ ≅ (−3,−D′N ′

Q
)

and O′ is B×-conjugate to one of the following:

1. The unique maximal order in B′ if D′ = 2

2. Z⊕Z1+i
2 ⊕Z (1+j

2 + i+k
6
) ⊕Z−3+i−2k

6 if 3 ∤D′N ′

3. Z⊕Z1+i
2 ⊕Zk

3 ⊕Zk−j
6 if 3 ∣D′N ′

Moreover if 3 ∣D′N ′, the order in 3. contains k/3, a square root of −D′N ′/3.

We prove one final theorem on simultaneous embeddings. For the remainder of the

section, let D be the squarefree product of an even number of primes, N a squarefree integer

coprime to D, and p a prime not dividing DN . We shall also set B′ ∶= BDp and let m ∣ DN

be an integer greater than one.

Lemma 4.2.8. We have the following isomorphisms of Q-algebras.

1. If 2 ∤ DNp, (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes q ∣ N , and

(−DNp ) = −1, then B′ ≅ (−p,−DNQ ).
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2. If 2 ∣ N , (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes q ∣ (N/2), and

(−DNp ) = −1, then B′ ≅ (−p,−DNQ ) ≅ (−p,−DN/2
Q ).

3. If 2 ∣D, (−pq ) = −1 for all primes q ∣D, (−pq ) = 1 for all primes q ∣ N , and (−DNp ) = −1,

then B′ ≅ (−p,−DNQ ).

4. If 2 ∣D, (−pq ) = −1 for all primes q ∣D, (−pq ) = 1 for all primes q ∣ N , and (−DN/2
p ) = −1,

then B′ ≅ (−p,−DN/2
Q ).

5. If p = 2, (−2
q ) = −1 for all primes q ∣ D, and (−2

q ) = 1 for all primes q ∣ N then

B′ ≅ (−2,−DN
Q ).

Proof. Let q be an odd prime, and let m ∣ DN so that if an odd prime divides DN then it

divides m. Recall that B(m) ∶= (−p,−mQ ) is ramified at q if and only if the quadratic form

x2 + py2 +mz2 +mpw2 is anisotropic over Qq if and only if it is anisotropic over Fq.

If q ∤ DNp, then q ∤ m and q ∤ p so by the Chevalley-Warning Theorem, B(m) is

unramified at q. If q ∣ N then x2 + py2 is isotropic over Fq because (−pq ) = 1, so B(m) is

unramified at q. If q ∣ D then x2 + py2 is anisotropic over Fq because (−pq ) = −1 so B(m) is

ramified at q. If p is odd and m is an integer such that (−mp ) = −1 then x2+my2 is anisotropic

over Fp, so B(m) is ramified at p. Finally note that B ⊗R is division.

Therefore, if 2 ∤ DNp then B(m) ≅ B′ ≅ BDp, or equivalently, B(m) is unramified at

2. If B(m) were ramified at 2, it would be ramified at an odd number of places of Q, and

hence B(m) is ramified precisely at the primes dividing Dp.

If 2 ∣ N then p is odd, all primes not dividing DNp are odd, and hence B(m) ≅ B′

whether m =DN or DN/2.

If 2 ∣D, then p is odd and we have (−p
2
) = (p

2
) = (2

p) = −1. Therefore

(−DN
p

) = (−DN/2
p

)(2

p
) = −(−DN/2

p
) ,
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so m =DN or DN/2 but not both. Whether m =DN or DN/2, we have shown that B(m)

is ramified at p, ∞ and precisely the odd number of odd primes dividing D. It follows that

for the appropriate choice of m, B(m) is ramified at 2 and thus B(m) ≅ BDp.

If p = 2 then B(m) is ramified both at ∞ and at the even number of primes dividing D,

so it must be ramified at 2. It follows that B(m) ≅ B′.

Theorem 4.2.9. Recall that D is the squarefree product of an even number of primes, N

a squarefree integer coprime to D, and p a prime not dividing DN . Recall further that

B′ = BDp and let m ∣DN be an integer greater than one. We have the following equivalences.

1. Suppose that 2 ∤DNp. There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m = DN , (−pq ) = −1 for all

primes q ∣D, (−pq ) = 1 for all primes q ∣ N , and (−DNp ) = −1.

2. Suppose that 2 ∣ N . There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if one of the following two cases

occurs.

• m = DN , (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes q ∣ (N/2), and

(−DNp ) = −1

• m = DN/2, (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes q ∣ (N/2), and

(−DN/2
p ) = −1

3. Suppose 2 ∣ D and (−DNp ) = −1. There is an Eichler order O′ of level N in B′ and

embeddings ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m =DN , (−pq ) = −1

for all primes q ∣ (D/2), p /≡ 7 mod 8, and (−pq ) = 1 for all primes q ∣ N .

4. Suppose 2 ∣ D and (−DNp ) = 1. There is an Eichler order O′ of level N in B′ and

embeddings ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m = DN/2,
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DN ≡ 2,6, or 10 mod 16, (−pq ) = −1 for all primes q ∣ (D/2), p /≡ 7 mod 8, and (−pq ) = 1

for all primes q ∣ N .

5. Suppose that p = 2. There is an Eichler order O′ of level N in B′ and embeddings

ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′ if and only if m =DN ≡ ±3 mod 8, (−2

q ) = −1

for all primes q ∣D, and (−2
q ) = 1 for all primes q ∣ N .

Proof. Suppose first that there exist embeddings ψ1 ∶ Z[√−p] ↪ O′ and ψ2 ∶ Z[
√
−m] ↪ O′

into some Eichler order O′ of level N in BDp. Let ω1 = ψ1(
√−p) and ω2 = ψ2(

√
−m), so

O′ ⊃ {1, ω1, ω2, ω1ω2}. Since (p,m) = 1, Z[√−p] /⊂ Z[
√
−m] and Z[

√
−m /⊂ Z[√−p]. Thus,

O′ ⊃ Z⊕Zω1 ⊕Zω2 ⊕Zω1ω2,

an order of reduced discriminant 4mp − s2 where s is the trace of ω1ω2. Therefore DNp ∣

4mp − s2, and since mp ∣ DNp, we must have mp ∣ s2. Since mp is squarefree, mp ∣ s and so

either mp ≤∣ s ∣ or s = 0.

If s ≠ 0 then m2p2 ≤ s2 < 4mp and thus mp < 4. However, recall that m is an integer

greater than one and p is a prime, so mp ≥ 4. Therefore s = 0 and mp ∣ DNp ∣ 4mp.

In fact, since DNp is squarefree, it divides the squarefree part of 4mp. If 2 ∤ mp then

mp ∣ DNp ∣ 2mp and either 2 ∤ DN and m = DN or 2 ∣ DN and m = DN/2. If 2 ∣ m then

mp ∣ DNp ∣ mp and so m = DN . If p = 2 then once more mp ∣ DNp ∣ mp and so m = DN .

Recall now that if n is squarefree and q is an odd prime then {4∆
q } = (4∆

q ) = (∆
q ). Therefore

Theorem 4.1.28 gives us the following congruence conditions.

• If 2 ∤ DNp then (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes q ∣ N , and

(−DNp ) = −1.

• If 2 ∣ N and m = DN then (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes

q ∣ (N/2), and (−DNp ) = −1
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• If 2 ∣ N and m = DN/2 then (−pq ) = −1 for all primes q ∣ D, (−pq ) = 1 for all primes

q ∣ (N/2), and (−DN/2
p ) = −1

• If 2 ∣ D and m = DN , then (−pq ) = −1 for all primes q ∣ (D/2), p ≡ ±3 mod 8, and

(−pq ) = 1 for all primes q ∣ N .

• If 2 ∣ D and m = DN/2, then DN ≡ 2,6,10 mod 16, (−pq ) = −1 for all primes q ∣ (D/2),

p ≡ ±3 mod 8, and (−pq ) = 1 for all primes q ∣ N .

• If p = 2 then DN ≡ ±3 mod 8, (−2
q ) = −1 for all primes q ∣D, and (−2

q ) = 1 for all primes

q ∣ N .

A word may be required on why we have no congruence conditions on p at 2 or DN/2

at 2 when 2 ∣ N . If p ≡ 3 mod 4 then 2 ∣ f(−4p) and thus {−4p
2

} = 1. If p ≡ 1 mod 4 then

2 ∤ f(−4p) and thus {−4p
2

} = (−4p
2

) = 0. The same holds for DN/2 since DN/2 is odd.

We now prove the converse when 2 ∤ DNp. By Lemma 4.2.8(1), BDp ≅ B′ = (−p,−DNQ ).

Contained in B′ is the order Z⊕Zi⊕Zj⊕Zij of reduced discriminant 4DNp. If p ≡ 3 mod 4

then Z⊕Z1+i
2 ⊕Zj ⊕Z (1+i

2
) j is an appropriate order of discriminant DNp, and is thus an

Eichler order of level N . Likewise if DN ≡ 3 mod 4 there is an appropriate Eichler order of

level N . Assume now that p ≡ 1 mod 4. Then

(−DN
p

) = (DN
p

) = ∏
q∣DN

(q
p
) = ∏

q∣DN
(p
q
) = ∏

q∣DN
(−p
q

) (−1)r

where r is the number of primes q ∣ DN such that q ≡ 3 mod 4. Moreover, since D is the

product of an even number of primes, (−pq ) = −1 if q ∣D, and (−pq ) = 1 if q ∣ N , it follows that

∏q∣DN (−pq ) = 1. Putting this all together we have shown that if p ≡ 1 mod 4, then

−1 = (−DN
p

) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 DN ≡ 1 mod 4

−1 DN ≡ 3 mod 4

.
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We now prove the converse when 2 ∣ N and m = DN . By Lemma 4.2.8(2), BDp ≅ B′ =

(−p,−DNQ ). Contained in B′ is the order Z⊕Zi⊕Zj ⊕Zij of reduced discriminant 4DNp. If

p ≡ 3 mod 4 then Z⊕Z1+i
2 ⊕Zj ⊕Z (1+i

2
) j is an appropriate order of discriminant DNp, and

is thus an Eichler order of level N . If p ≡ 1 mod 4 then Z⊕Zi⊕Z (1+i+j
2

) ⊕Z (−1−i+ij
2

) is an

appropriate order of discriminant DNp.

We now prove the converse when 2 ∣ N and m = DN/2. By Lemma 4.2.8(2), BDp ≅ B′ =

(−p,−DN/2
Q ). Contained in B′ is the order Z⊕Zi⊕Zj⊕Zij of reduced discriminant 2DNp. It

follows that the “Hurwitz quaternions” Z⊕Zi⊕Zj ⊕Z (1+i+j+ij
2

) are an appropriate Eichler

order of discriminant DNp.

We now prove the converse when 2 ∣ D and m = DN . By Lemma 4.2.8(3), BDp ≅ B′ =

(−p,−DNQ ). Contained in B′ is the order Z⊕Zi⊕Zj ⊕Zij of reduced discriminant 4DNp. If

p ≡ 3 mod 8 then Z⊕Z1+i
2 ⊕Zj ⊕Z (1+i

2
) j is an appropriate order of discriminant DNp, and

is thus an Eichler order of level N . If p ≡ 5 mod 8 then Z⊕Zi⊕Z (1+i+j
2

) ⊕Z (−1−i+ij
2

) is an

appropriate order of discriminant DNp.

We now prove the converse when 2 ∣ D and m = DN/2. By Lemma 4.2.8(4), BDp ≅ B′ =

(−p,−DN/2
Q ). Contained in B′ is the order Z⊕Zi⊕Zj⊕Zij of reduced discriminant 2DNp. It

follows that Z⊕Zi⊕Zj⊕Z (1+i+j+ij
2

) are an appropriate Eichler order of discriminant DNp.

We now prove the converse when p = 2. By Lemma 4.2.8(5), BDp ≅ B′ = (−2,−DN
Q ).

Contained in B′ is the order Z⊕Zi⊕Zj⊕Zij of reduced discriminant 4DNp. IfDN ≡ 3 mod 8

then Z ⊕Z1+j
2 ⊕Zi ⊕Z (1+j

2
) i is an appropriate order of discriminant DNp, and is thus an

Eichler order of levelN . IfDN ≡ 5 mod 8 then Z⊕Zj⊕Z (1+i+j
2

)⊕Z (−1−j+ij
2

) is an appropriate

order of discriminant DNp.
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Chapter 5

A Moduli Problem

We wish here to construct a scheme XD
0 (N)/S for any scheme S. Informally, we define it to

be the coarse moduli scheme for QM-abelian surfaces with Γ0(N)-structure. A reader who

finds that definition sufficient and knows (even informally) how to define the Atkin-Lehner

involutions may skip the first two sections and proceed on to section 5.3.

Section 5.3 concerns abelian varieties which are in the literature referred to as superspecial.

These varieties will play a very important role in the remainder of this thesis. The reason is

that the action of Galois on these surfaces can be understood using the theorems of chapter

4.

In order to state these results, we will first record some basics on abelian surfaces. After

that, we record at length the different equivalent moduli problems which define the coarse

moduli scheme XD
0 (N)/S. Then we will recall some results on the explicit forms of the

models of XD
0 (N)Zp . Finally, after completing section 5.3, we will be able to prove the main

theorems of this thesis.

Throughout this chapter, we will assume by convention that D is a squarefree product

of an even number of primes and that N is squarefree and coprime to D.
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5.1 Basics on Abelian Surfaces

Definition 5.1.1. An abelian scheme A → S is a smooth, proper S-group scheme with

connected fibers. This map has an identity section, which we denote 0 ∶ S → A. If all

geometric fibers of A→ S have the same dimension d, we define dimS(A) ∶= d.

Definition 5.1.2. If A → S is an abelian scheme, and γ ∶ A → A is an S-morphism such

that γ0 = 0, we say that γ is an S-endomorphism of A. We denote the Z-algebra of S-

endomorphisms of A by EndS(A).

Definition 5.1.3. Let S be a scheme and let (A1,01), (A2,02) be abelian schemes over S.

We say that φ is an isogeny if φ ∶ A1 → A2 is a finite flat S-morphism such that φ01 = 02. In

that case, ker(φ) ∶= φ∗02(S) is a finite flat subgroup scheme of A1.

Definition 5.1.4. Let αp,Z be the group scheme such that for all rings R, αp(R) = {x ∈ R ∶

xp = 0}. If k/Fp is a field and A/k is an abelian variety such that there is no embedding of

k-schemes αp,k ↪ A[p] then we say that A is ordinary.

Definition 5.1.5. An abelian surface A/S is a two-dimensional abelian scheme over S.

If A/S is an abelian surface, s ∈ S is a closed point and As is an abelian variety over

k(s) then define Lie(As) ∶= Hom(OAs,0, k(s)[ε]/(ε2)) [Liu02, Exercise 4.2.7]. Since As is

nonsingular, Endk(s)(Lie(As)) ≅ M2(k(s)). By the definition of an endomorphism of an

abelian scheme, there is a natural action of Endk(s)(As) on OAs,0. It follows that there is

a natural action of Endk(s)(As) on Lie(As). Moreover, if k(s) has characteristic p, there

is a natural action of Endk(s)(As)/(p) on Lie(As). Therefore, there is a homomorphism

φ ∶ Endk(s)(As)/(p) →M2(k(s)).

Suppose that ` is a finite subfield of Endk(s)(As)/(p) and consider the image of ` in

M2(k(s)). Since ` is separable over Fp, the Jordan canonical form of any particular element
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of φ(`) has two Jordan blocks. Since ` is commutative, φ(`) is simultaneously diagonaliz-

able if k(s) is algebraically closed. It follows that if k(s) = k(s) then φ defines a pair of

homomorphisms `→ k(s).

Definition 5.1.6. Let BD be the quaternion algebra over Q of discriminant D and let O be

a fixed Eichler order of level N in BD with (D,N) = 1. An abelian O-surface (A/S, ι) is an

abelian surface with an optimal embedding ι ∶ O ↪ EndS(A). If O is clear from context, we

may refer to (A, ι) as a QM-abelian surface.

Note that if ι ∶ O ↪ EndS(A), then ι also induces O/NO ↪ EndS(A)/N EndS(A). This

is because if f, g ∈ ι(O) and f − g ∈ N EndS(A) then f − g ∈ ι(NO).

Definition 5.1.7. A morphism of abelian O-surfaces f ∶ (A/S, ι) → (A′
/S, ι

′) is an S-

morphism f ∶ A → A′ such that fι(⋅) = ι′(⋅)f . If the morphism f is an isogeny or iso-

morphism, we will say that f ∶ (A, ι) → (A′, ι′) is an isogeny or isomorphism of abelian

O-surfaces.

Let O be an Eichler order of level N in BD with (D,N) = 1. Recall by Lemma 4.1.15 that

if p ∣D, O/pO ≅ Fp2 ⊕ Fp2πp. Further recall that if a ∈ Fp2 , πp must be such that apπp = πpa

Definition 5.1.8. Let (A/S, ι) be an abelian O-surface and p ∣ D. Thus Fp2 ⊂ O/pO acts

on Lie(As) through ι. For all closed points s ∈ S such that k(s) is algebraically closed of

characteristic p, let σs, τs ∶ Fp2 → k(s) the distinct embeddings. Consider Lie(As) as a k(s)-

vector space and let Lie(As)[φ] denote the subspace of Lie(As) on which Fp2 ⊂ O/pO acts

through φ ∶ Fp2 ↪ k(s). We say that (A/S, ι) is mixed if for all such s ∈ S, both Lie(As)[σs]

and Lie(As)[τs] are one-dimensional k(s)-vector spaces.

Remark 5.1.9. Notice that over Z[1/D]-schemes, every abelian O-surface is mixed.

Definition 5.1.10. Let A → S is an abelian scheme and At → S its dual abelian scheme

[FC90, Theorem I.1.9]. If there exists a principal polarization Π ∶ A ∼→ At [FC90, Definition
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I.1.6] then there is an involution on EndS(A) given by φ ↦ φ† = Π−1φtΠ called the Rosati

Involution associated to Π.

Recall that if OD is a maximal order in BD, then there exists some µ ∈ OD such that

µ2 +D = 0 by Theorem 4.1.28. Denote by α the main involution of BD = OD ⊗Q applied to

α as in Definition 4.1.6.

Definition 5.1.11. Let (A/S, ι) is an abelian OD-surface. Fix some µ ∈ OD such that µ2+D =

0. A µ-polarization on (A, ι) is a principal polarization of A such that ι(α)† = ι(µ−1αµ).

Lemma 5.1.12. Let OD be a maximal order in BD and let (A, ι) is a mixed abelian OD-

surface over a scheme S. If µ ∈ OD is such that µ2 +D = 0, then A has a µ-polarization.

Proof. Over Z[1/D], a unique µ-polarization can be determined by a close examination of

`-divisible groups [Buz97, p.3]. Over Zp for p ∣D, a unique µ-polarization may be determined

using formal groups [Dri76, Proposition 4.3], [BC91, III.3.5]. To descend from Zp to Z(p),

we use faithfully flat descent, that is, ΠZp descends down to Z(p) if and only if p∗1Π =

p∗2Π where p1, p2 are the projections Spec(Zp ⊗Z
(p)

Zp) ≅ Spec(Zp) ×Spec(Z
(p)) Spec(Zp) →

Spec(Zp)[SGA03, Corollaire VIII.1.2]. But then Zp ⊗Z
(p)

Zp is a Zp-scheme so there is a

unique µ-polarization using Drinfeld’s result. Finally, we may glue the µ-polarizations over

Z[1/D] and Z(p) to obtain a µ-polarization over Z[p/D], and thus over Z.

Remark 5.1.13. Although we shall only speak of the µ-polarization above, there may be

other principal polarizations given to A, even some compatible in some way with ι [Rot04].

5.2 Some Moduli Problems

We now list a few categories and functors of abelian surfaces. We will show that if two such

functors have the same discrete invariants and base schemes, they are isomorphic as functors.
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Moreover, they have coarse moduli spaces. These coarse moduli spaces will be what we will

call Shimura curves.

Definition 5.2.1. Suppose that (D,N) = 1, O is an Eichler order of level N in BD and S

is a scheme. Let T be an S-scheme and let CD0 (N)(T ) denote the category whose objects are

mixed abelian O-surfaces (A, ι)/T and whose morphisms f ∶ (A, ι) → (A′, ι′) are isomorphisms

f ∶ A→ A′ such that for all α ∈ O, fι(α) = ι′(α)f . For all objects (A, ι) of CD0 (N)(T ) define

the equivalence class [(A, ι)] to be such that [(A, ι)] = [(A′, ι′)] if there is a morphism

f ∶ A→ A′ of CD0 (N)(T ). Let FD0 (N)S denote the contravariant functor from the category of

S-schemes to the category of sets defined as follows. If T is an S-scheme, define FD0 (N)(T )

to be the set of all equivalence classes [(A, ι)] where (A, ι) is an object of CD0 (N)(T ).

Notice that FD0 (N)S is a functor because if φ ∶ T → T ′ is a morphism and (A, ι) is an

object of CD0 (N)(T ′) then we can form the base change morphism b ∶ AT → A. Therefore,

consider the embedding b∗ ∶ EndT ′(A) ↪ EndT (AT ), which induces a map of sets φ∗ ∶

CD0 (N)(T ′) → CD0 (N)(T ) by (A, ι) ↦ (AT , b∗ι). Note that b∗ι ∶ O ↪ EndT (AT ) is optimal.

If not, there is a larger order O′ ⊃ O and an embedding ε ∶ O′ ↪ EndT (AT ) such that for

all γ ∈ O, ε(γ) = b∗ι(γ). Recall now that O is the intersection of two maximal orders.

Since O′ is an order which properly contains O, it must lie in exactly one of these maximal

orders, which we now call OD. Since [OD ∶ O] = N , for all α ∈ O′ ∖ O, Nα ∈ O. Now since

b∗ι(Nα) = ε(Nα) = ε(α)[N]AT , the kernel of b∗ι(Nα) contains the kernel of [N]AT . Since b∗

is an embedding, the kernel of ι(Nα) admits an embedding of the kernel of [N]A and thus

ι extends to an embedding O′ ↪ EndT ′(A), in contradiction to the optimality of ι.

In addition to defining this moduli functor, we will define a natural tranformation of

functors wq ∶ FD0 (N)S → FD0 (N)S for all schemes S. Suppose that q ∣ DN is prime so that

there is a unique two-sided idealQ ofO of norm q by Lemma 4.1.23. Since BD is indefinite, all

ideals are principal and thus there exists some βq ∈ O, unique up to multiplication by O× such

that Q = βqO = Oβq. Suppose that O is an Eichler order of level N in BD and S is a scheme.
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There is a self-bijection of FD0 (N)S(T ) induced by Q as follows. Let wq ∶ [(A, ι)] ↦ [(A, ιβq)]

where ιβq(x) = ι(βq)−1ι(x)ι(βq). Notice that if u ∈ O× then ι(u) induces an O-equivariant

isomorphism between (A, ι(⋅)) and (A, ι(u)−1ι(⋅)ι(u)). Therefore [(A, ιβqu)] = [(A, ιβq)] and

thus wq[(A, ι)] depends only on q. Notice also that if s ∈ S is a closed point such that k(s)

is an algebraically closed field of characteristic p ∣ D then either p ≠ q and conjugating by

ι(βq) preserves Lie(As)[σs] and Lie(As)[τs], or p = q and conjugating by ι(βp) interchanges

them by Lemma 4.1.15.

Now consider that the following diagram commutes:

FD0 (N)(T ′) wq //

φ∗

��

FD0 (N)(T ′)
φ∗

��
FD0 (N)(T ) wq // FD0 (N)(T ),

so wq defines a natural transformation FD0 (N)S → FD0 (N)S. To see the diagram com-

mutes, note first that [(AT , b∗(ιβq(⋅)))] = φ∗[(A, ιβq)] = φ∗wq[(A, ι)]. For all α ∈ O,

b∗(ι(βq)−1ι(α)ι(βq)) = (b∗ι(βq))−1b∗ι(α)b∗ι(βq),

because b∗ is a homomorphism. Since [(AT , (b∗ι)βq)] = wq[(AT , b∗ι)] = wqφ∗[(A, ι)], we

see that for all elements of FD0 (N)(T ′), φ∗wq[(A, ι)] = wqφ∗[(A, ι)].

Definition 5.2.2. For all m ∣DN we define an automorphism wm ∶ FD0 (N)S → FD0 (N)S as

the composition of wq for all q ∣m prime. We will call wm the m-th Atkin-Lehner involution.

Define the set W of all such wm to be the Atkin-Lehner group.

Note that by Lemma 4.1.23, the two-sided ideals form an abelian group, so the above

definition of wm makes sense.

Definition 5.2.3. We say that (A, ι) is fixed by wm if [(A, ι)] = [(A, ιβm)], where βm is a

generator of the unique integral two-sided ideal of O of norm m.
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Equivalently, (A, ι) is wm-fixed if for all α ∈ O, ι(βm)−1ι(α)ι(βm) = ι(α). This is to say

that ι(βm) lies in the commutant of ι(O) in EndT (A). Let M be the two-sided ideal of O

of norm m. Thus ι(M) is the unique integral two-sided ideal of norm m in ι(O). Since

βm generates M if and only if ι(βm) generates ι(M), (A, ι) is wm-fixed if and only if the

commutant of ι(O) in EndT (A) contains a generator of ι(M).

Definition 5.2.4. Suppose that OD is a maximal order in BD, µ ∈ OD such that µ2 +D =

0, S is a scheme and T is an S-scheme. Let CDµ (N)(T ) the category whose objects are

isogenies of mixed abelian OD-surfaces φ ∶ (A/T , ι) → (A′
/T , ι

′) such that φ†φ = [N]A where

()† is the Rosati involution associated to the unique µ-polarization on A. The morphisms

(φ ∶ (A, ι) → (A′, ι′)) → (ψ ∶ (B, ε) → (B′ε′)) are pairs of isomorphisms f ∶ A → B, g ∶

A′ → B′ such that for all α ∈ OD, fι(α) = ε(α)f , gι′(α) = ε′(α)g and gφ = ψf . For all

objects φ ∶ (A/T , ι) → (A′
/T , ι

′) of FDµ (N)(T ) let [φ] denote the equivalence class such that

[φ] = [ψ] if there is a morphism (f, g) of CDµ (N)(T ) such that gφ = ψf . Let FDµ (N)S denote

the contravariant functor from the category of S-schemes to the category of sets defined as

follows. To an S-scheme T , we associate the set of all equivalence classes [φ] with φ an

object of CDµ (N)(T ).

Note that FDµ (N)S is a functor because isogenies pull back along morphisms of schemes.

That is, fix a principal polarization of A and let φ ∶ A→ A′ be an isogeny of T ′-schemes such

that φ†φ = [N]A. If T → T ′ is a morphism of schemes and b ∶ AT → A is the base change

morphism, then let φT ∶ AT → A′
T be the base change of φ along b. Likewise let φ†

T be the

base change of φ†. Since bφ†
TφT = φ†φb = [N]Ab = b[N]AT , φ

†
TφT = [N]AT .

Definition 5.2.5. Suppose that OD is a maximal order in BD, (D,N) = 1, and S is a

scheme. Let T be an S-scheme and let CDcl (N)(T ) denote the category whose objects are

triples (A, ι,K)/T where (A, ι) is a mixed abelian OD-surface and K is a closed OD-invariant

subgroup scheme of A[N] of order N2. The morphisms (A, ι,K) → (A′, ι′,K ′) are isomor-
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phisms f ∶ A → A′ such that fι(⋅) = ι′(⋅)f and f(K) = K ′. For all objects (A, ι,K) of

CDcl (N)(T ), let [(A, ι,K)] denote the equivalence class such that [(A, ι,K)] = [(A′, ι′,K ′)]

if there is a morphism f ∶ (A, ι,K) → (A′, ι′,K ′) which is a morphism of CDcl (N)(T ). Let

FDcl (N)S denote the contravariant functor from the category of S-schemes to the category

of sets defined as follows. To an S-scheme T we associate the set of all equivalence classes

[(A, ι,K)] where (A, ι,K) is an object of CDcl (N)(T ).

Note for the following definition that if ι ∶ OD ↪ EndS(A), ι induces an embedding

[ι/N] ∶ OD ⊗Z/NZ↪ EndS(A) ⊗Z/NZ.

Definition 5.2.6. Suppose that OD is a maximal order in BD, (D,N) = 1, and S is a

scheme. Let T be an S-scheme. For any fixed isomorphism ψ ∶M2(Z/NZ) → OD ⊗ Z/NZ,

let e = ψ

⎛
⎜⎜
⎝

1 0

0 0

⎞
⎟⎟
⎠
. With this data, define a category Cψ(T ) whose objects are triples

(A, ι,K)/T where (A, ι) is a mixed abelian OD-scheme and K is a closed subgroup scheme

of ker([ι/N](e)) which is locally free of rank N . The morphisms (A, ι,K) → (A′, ι′,K ′) are

isomorphisms f ∶ A → A′ such that fι(⋅) = ι′(⋅)f and f(K) = K ′. Let [(A, ι,K)]ψ denote

the equivalence class of objects of Cψ(T ) such that [(A, ι,K)]ψ = [(A′, ι′,K ′)]ψ if there is a

morphism f ∶ (A, ι,K) → (A′, ι′,K ′) of Cψ(T ). Let FψS be the contravariant functor from the

category of S-schemes to the category of sets defined as follows. To an S-scheme T associate

the set of all equivalence classes [(A, ι,K)]ψ with (A, ι,K) an object of Cψ(T ).

We note that these are functors because the rank of a finite group scheme is preserved

under base change. We also note that for all T there is a natural “forgetful” functor

CDcl (N)(T ) → CDcl (1)(T ) sending an object (A, ι,K) to (A, ι,{0A} and a morphism f to

itself.

Lemma 5.2.7. The categories CDµ (N)(T ), CDcl (N)(T ) and Cψ(T ) are equivalent for all max-

imal orders OD, for all µ such that µ2 +D = 0, for all ψ ∶M2(Z/NZ) → OD ⊗Z/NZ and for

all schemes S.
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Proof. Since N is square-free, it is equivalent to give a closed subgroup with is locally free

of rank N and to give closed subgroups which are locally free of rank p for all p ∣ N . That is,

if K is such a subgroup, take ker([p]A ∶ K → K) for all p ∣ N and if {Kp}p∣N is a collection

of such subgroups, take their product. Recall that if N is prime there is a bijection between

the objects of CDµ (N)(T ), CDcl (N)(T ) and Cψ(T ) [Buz97, pp. 8-9] and by the decomposition

of K into groups of prime order, this bijection extends to all squarefree N .

Note that a morphism of CDcl (N)(T ) is a morphism of Cψ(T ) and vice versa. If (A, ι,K)

is an object of Cψ(T ) and t = ψ
⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
, then let K ′ = tK. It follows that an OD-equivariant

isomorphism f ∶ A→ B fixes K if and only if f fixes K ×K ′.

If φ ∶ (A, ι) → (A′, ι′) and ψ ∶ (B, ε) → (B′, ε′) are objects of CDµ (N)(T ) and (f ∶ (A, ι) →

(B, ε), g ∶ (A′, ι′) → (B′, ε′)) is a morphism of CDµ (N)(T ) then f is OD-equivariant and

f(kerφ) = kerψ. Therefore f is a morphism of CDcl (N)(T ). Conversely if f ∶ (A, ι,K) →

(B, ε,C) is a morphism of CDcl (N)(T ) and g ∶ A/K → B/C induced by f then (f, g) is a

morphism of CDµ (N)(T ).

Note also that by the proof above, especially the argument on subgroup schemes of

prime or prime-power order, for all primes p ∣ N , we have a pair of natural transformations

of functors FDcl (N)S → FDcl (N/p)S×FD
cl

(1)SFDcl (p)S → FDcl (N)S which compose to the identity.

We may thus use the forgetful functor CDcl (p)(T ) → CDcl (1)(T ) to define a “forgetful” natural

transformation FDcl (N)S → FDcl (N/p)S.

Lemma 5.2.8. If S is a scheme then there are a pair of natural tranformations FD0 (N)S →

FDcl (N)S → FD0 (N)S which compose to the identity.

Proof. We first note that considering these two functors, we are taking a choice of a maximal

order OD and a level N Eichler order O, which we may take to be contained in OD. To give

an isomorphism, pick a generator βN of the unique two-sided ideal of norm N in O. The
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interested reader is encouraged to notice the similarities to the approach of Molina[Mol10,

Appendix]. This naturally determines a unit u such that β2
N = Nu or rather that βNβNu−1 =

N . This also realizes O = OD ∩ β−1
N ODβN with index N in each. It follows that the unique

two-sided O-ideal of norm N is βNO = βNOD ∩ ODβN and the index of βNO in each is N ,

and moreover that both βNOD and ODβN have index N in O. Finally note that since u is

a unit of O, it is a unit of OD and so βNu−1OD = βNOD.

Let T be an S-scheme and let (A, ι) be an abelian O-surface. Define abelian surfaces

A0 ∶= A/kerker(ι(βN ))(ι(ODβN)), A′
0 ∶= A/kerker(ι(βNu−1))(ι(βNu−1OD)) and let ρ, ρ′ be the

respective reduction morphisms.

Notice that we have taken A′
0 to be isomorphic to A/kerker(ιβNO(βNu−1))(ιβNO(ODβN))

under the definition of ιβNO in Definition 5.2.2. We may take η ∶ A0 → A, η′ ∶ A′
0 → A such

that ηρ = ι(βN), η′ρ′ = ι(βNu−1). If we define φ0 ∶= ρ′η and φ′0 ∶= ρη′ then

ηφ′0φ0 = ι(βN)ι(βNu−1)η = [N]Aη = η[N]A0

so φ′0φ0 = [N]A0 . In summary, the following diagram commutes.

A0
φ0 //

η

��

A′
0

φ′0 //

η′

��

A0

η

��
A

ι(βNu−1) //

ρ′
77

A
ι(βN ) //

ρ

77

A

Since we have shown that the Atkin-Lehner involution wN interchanges φ0 and φ′0,

# ker(φ0) = # ker(φ′0) = N2.

Now consider that βNu−1OD ⊂ O, so that ι(βNu−1α) ∈ EndT (A). In fact, ker(ι(βNu−1)) ⊂

ker(ι(βNu−1α)), so ρι(βNu−1α)η ∈ N EndT (A0). Note also that for all α, γ ∈ OD,
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1

[N2]A0

ρι(βNu−1α)ηρι(βNu−1γ)η = 1

[N2]A0

ρι(βNu−1α)ι(βNβNu−1γ)η

= 1

[N2]A0

ρι(βNu−1αNγ)η

= 1

[N]A0

ρι(βNu−1αγ)η

Therefore we define ι0 ∶ OD ↪ EndT (A0) by ι0(α) = 1
[N]A0

ρι(βNu−1α)η. Therefore,

given an object (A, ι) of CD0 (N)(T ), we associate the object (A0, ι0,ker(φ0)) of CDcl (N)(T ).

Suppose that (B, ε) is an object of CD0 (N)(T ) and as we obtained (ρ, ρ′, η, η′) from (A, ι),

let us obtain (σ,σ′, ζ, ζ ′) from (B, ε). To a morphism f ∶ (A, ι) → (B, ε) of CD0 (N)(T ), we

associate the morphism 1
[N]B0

σfη′φ0 ∶ (A0, ι0) → (B0, ε0) of CDcl (N)(T ). We have thus defined

a functor CD0 (N)(T ) → CDcl (N)(T ).

Now suppose that T is an S-scheme, (A0, ι0) is an abelian OD-surface and K a closed

subgroup of A0, locally free of rank N2. Consider the closed subgroup scheme K∩ker ι0(βN),

define A ∶= A0/(K ∩ ker ι(βN)) and let η ∶ A0 → A be the reduction map. Let also ρ ∶ A →
A0/K∩ker ι0(βN )

ker(ι0(βN ))/(K∩ker(ι0(βN ))) ≅ A0

ker(ι0(βN )) ≅ A0. Additionally define φ′0 ∶ A0/(K ∩ ker ι(βN)) →
A0/(K∩ker ι(βN ))

A0[N]/(K∩ker ι(βN )) . Note that A0/(K∩ker ι(βN ))
A0[N]/(K∩ker ι(βN )) ≅ A0

A0[N] ≅ A0. Note that since βNO = OβN ,

ι0(O)ker(ι0(βN)) ⊂ ker(ι0(βN)) and therefore ι0 induces an embedding ι ∶ O ↪ EndT (A).

More precisely, for all α ∈ O, define ι(α) = 1
[N]Aηι0(α)φ

′
0ρ

′. Moreover, this embed-

ding ι is optimal because the set of α ∈ OD such that ι0(α)ker(ι0(βN)) ⊂ ker(ι0(βN)) is

the set of α ∈ OD such that βNα ∈ ODβN . This is to say that α ∈ OD ∩ β−1
N ODβN =

O and therefore O is the largest order L in BD such that ι0 can induce an embedding

L ↪ EndT (A). Therefore to an object (A0, ι0,K) of CDcl (N)(T ) we associate the object

(A0/(K ∩ ker(ι0(βN))), 1
[N]Aηι0(⋅)φ

′
0ρ

′) of CD0 (N)(T ).

Suppose now that (B0, ε0,C) is another object of CDcl (N)(T ), and as we have obtained

(A′
0, φ0, φ′0, η, ρ, ρ

′) from (A0, ι0,K), let us obtain (B′
0, ψ0, ψ′0, ζ, σ, σ

′) from (B0, ε0,C). Sup-
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pose further that f0 ∶ (A0, ι0,K) → (B0, ε0,C) is a morphism in CDcl (N)(T ). Then we associate

to f0 the morphism 1
[N]B ζf0φ′0ρ of CD0 (N).

Note therefore that if (A, ι) is an object of CD0 (N)(T ), the object of CD0 (N)(T ) associated

to (A/kerker(ι(βN ))(ι(ODβN)), 1
[N]A0

ρι(βNu−1⋅)η,ker(ρ′η)) is

⎛
⎜⎜⎜
⎝

A
kerker(ι(βN ))

(ι(ODβN ))

(ker(ρ′η)∩ker( 1
[N]A0

ρι(βNu−1βN )η))

kerker(ι(βN ))
(ι(ODβN ))

,
1

[N]A
η

1

[N]A0

ρι(βNu−1⋅)ηφ′0ρ′
⎞
⎟⎟⎟
⎠

Note first that ρι(βNu−1βN)η = ρη′ρ′ηρη = [N]A0ρη. Therefore

A
kerker(ι(βN ))

(ι(ODβN ))

(ker(ρ′η)∩ker( 1
[N]A0

ρι(βNu−1βN )η))

kerker(ι(βN ))
(ι(ODβN ))

∼→ A0

ker(ρ′η) ∩ ker(ρη)
∼→ A

ker(ρ′) ∩ ker(ρ) ≅ A,

because ker(ρ′) ∩ ker(ρ) = 0.

Note now that ηφ′0ρ′ = [N]A so that 1
[N]Aη

1
[N]A0

ρι(βNu−1⋅)ηφ′0ρ′ = η 1
[N]A0

ρι(βNu−1⋅) =
1

[N]Aηρι(βNu
−1)ι(⋅) = 1

[N]A ι(βNβNu
−1)ι(⋅) = ι(⋅).

Note also that the functor CD0 (N)(T ) → CD0 (N)(T ) takes a morphism f to

1

[N]B
ζ ( 1

[N]B0

σfη′φ0)φ′0ρ′ =
1

[N2]B
ε(βN)fη′ρ′(ηφ′0ρ′) =

1

[N]B
ε(βNβNu−1)f = f.

Remark 5.2.9. It may be interesting to produce a proof of the above using Serre’s tensor

product construction.

Recall now that if A/S is an abelian scheme and ι ∶ OD ↪ EndS(A) then there is a natural

left action of OD on A[n] for any positive integer n. Similarly, there is a natural left action of

OD on OD⊗Z/nZ. Note also that since OD ≅ Z4 as an additive group, OD⊗Z/nZ ≅ (Z/nZ)4

as an additive group. Therefore if we denote by (OD ⊗ Z/nZ)S the constant group scheme
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over S with the natural left action of OD, the following definition makes sense.

Definition 5.2.10. Let OD be a maximal order in BD, S a scheme and (A/S, ι) an abelian

OD-surface. Let n be an integer coprime to D. A full level n structure on an abelian OD-

surface is an isomorphism of group schemes ν ∶ (OD ⊗Z/nZ)S
∼→ A[n] commuting with the

action of each as a left OD-module.

Lemma 5.2.11. Suppose that S is a Z[1/n]-scheme and (D,n) = 1. Fix an isomorphism

ψ ∶M2(Z/nZ)S → (OD ⊗Z/nZ)S and let e = ψ
⎛
⎜⎜
⎝

1 0

0 0

⎞
⎟⎟
⎠
. It is equivalent to give a full level

n structure to a QM abelian surface (A, ι) and to give an isomorphism ker(e) ≅ (Z/nZ)2
S.

Proof. Let ν be a full level n structure on (A, ι). Set t = ψ

⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
, which induces an

isomorphism between ker(e) and ker(1 − e). Since for any idempotent we have an exact

sequence

0→ ker(e) → A[n] e→ eA[n] → 0

with a splitting given by 1 − e, we have ker(e) ≅ (1 − e)A[n] ≅ (Z/nZ)2
S.

Conversely, suppose we have an isomorphism ker(e) ≅ (Z/nZ)2
S. We still have ker(e) ≅

(1 − e)A[n] by splitting the exact sequence above and since ker(e) ≅ ker(1 − e) we can pick

P1, P2 ∈ eA[n] mapping to (1,0), (0,1) under our isomorphism eA[n] ≅ ker(1 − e) ≅ ker(e) ≅

(Z/nZ)2
S. Note that since there exist P ′

1, P
′
2 ∈ A[n] such that Pi = eP ′

i so ePi = e2P ′
i =

eP ′
i = Pi. Note also that P3 = tP1 and P4 = tP2 realize (1 − e)A[n] ≅ ker(e) ≅ (Z/nZ)2

S and

similarly (1 − e)P2+i = tet2eP ′
i = te2P ′

i = teP ′
i = tPi = P2+i. Under ψ, {e, et, te, tet} forms

the standard (Z/nZ)S generating set of M2(Z/nZ)S by elementary matrices. Therefore,

identifying aP1 + bP2 + cP3 + dP4 with
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

determines a left OD-linear isomorphism

between A[n] and M2(Z/nZ)S ≅ (OD ⊗Z/nZ)S.
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Theorem 5.2.12 (Čerednik-Drinfeld). Let n ≥ 3 be an integer and D > 1. Consider the

functor FD(n) sending a Z[1/n]-scheme S to the set of all (A/S, ι, ν) up to S-isomorphism

where (A/S, ι) is a mixed abelian OD-surface and ν is a full level n structure on (A, ι). The

functor FD(n) is representable by a projective Z[1/n]-scheme which we denote XD(n).

Proof. This theorem is [Dri76, Proposition 4.4].

It is well-known that F1(n) is not represented by a proper scheme, but there is a natural

compactification of the scheme which represents F1(n) which has been well-studied.

Theorem 5.2.13. Let n ≥ 3 and let O1 be a maximal order in B1 ≅M2(Q). Let F ′(n) denote

the contravariant functor from the category of schemes to the category of sets as follows. To

a scheme S, associate the set of S-isomorphism classes of (A, ι, ν) where ν is a full level n

structure and A is either an abelian O-surface or the square of a Néron n-gon in the sense

of [DR73, II.3.1]. Then F ′(n) is representable by a smooth, projective Z[1/n]-scheme which

we denote X1(n).

Note that in the setting of elliptic curves, it is more common to refer to X1(n) as X(n)

[Sil92, p.354].

Proof. We first note that F1(n) is naturally a subfunctor of F ′(n). If we can show that

F1(n) actually sends T to the set of T -isomorphism classes of elliptic curves with level n

structures, we are done [DR73, Corollaire IV.2.9] because by Lemma 5.2.11 we are using

the same definition of a level structure as Deligne and Rapoport. Since D = 1, O1 contains

nontrivial idempotents e. A nontrivial idempotent in O1 ≅M2(Z) gives a decomposition of

A as E2 with E ≅ ker(e) ≅ ker(1 − e) an elliptic curve.

Corollary 5.2.14. Let n ≥ 3 a multiple of N coprime to D such that (N,n/N) = 1. Let S

be a flat Z[1/n]-scheme and T an S-scheme. Let O be an Eichler order of level N in BD

and OD a maximal order containing O. We may define an action of g ∈ Γ = (O⊗Z/nZ)× on
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XD(n) by (A/T , ι ∶ OD ↪ EndT (A), ν) ↦ (A/T , ι, νg) since OD ⊃ O. The quotient XD(n)/Γ

is a coarse moduli scheme for FD0 (N)S.

Proof. First, we may assume D > 1 [DR73, Proposition IV.3.10].

To obtain a coarse moduli space, we must have a stack. We shall show that over Z[1/n],

the quotient functor FD(n)/Γ agrees with FD0 (N). The quotient functor is represented by

a stack in the étale topology on S, in fact the Deligne-Mumford quotient stack [XD(n)/Γ]

since the constant group scheme Γ is étale [LMB00, 4.6.1]. The result follows [DR73, I.8.2.2]

once we show that FD0 (N) is the appropriate quotient functor. The following is essentially

an expansion of Buzzard’s Lemma 4.4 [Buz97].

Let T be an S-scheme and (A, ι, [ν]Γ) an object of FD(n)/Γ(T ). Since Γ is étale, there

is, after an étale base extension T ′ → T , a full level structure ν on AT ′ . Since finite étale

maps are fpqc, and there is an equivalence of categories between quasi-coherent T -modules

and quasi-coherent T ′-modules with descent data [BLR90, Theorem 6.4], there is no harm in

working with (AT ′ , ι ∶ O ↪ EndT (A) ↪ EndT ′(AT ′), ν) and descent data given by the action

of Γ.

To fix ideas, fix an isomorphism ψ ∶M2(Z/NZ) → OD ⊗Z/NZ and O ≅ OD0 (N). Define

OD0 (N) to be the set of elements of OD which become upper-triangular in OD ⊗Z/NZ via

ψ. By Theorem 4.1.21, O is conjugate to OD0 (N), so without loss of generality we assume

O = OD0 (N). Since n = Nd with (d,N) = 1, OD ⊗ Z/nZ ≅ OD ⊗ Z/NZ ⊕ OD ⊗ Z/dZ as

left OD-modules. Consider the element of FD0 (N)(T ′) given by (A, ι, ν(M)) with M =
⎛
⎜⎜
⎝

0 ∗

0 ∗

⎞
⎟⎟
⎠
⊕{0} ⊂ OD⊗Z/NZ⊕OD⊗Z/dZ. Observe that the subgroup M is invariant under

the (right multiplication) action of (O ⊗ Z/nZ)×, so the triple (A, ι, ν(M)) descends down

to T .

Conversely, we know that since we are working over a Z[1/n]-scheme, after an étale

extension S′ → S, there is an isomorphism A[n] ≅ (Z/nZ)4
T ′ . Let e be an idempotent of
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OD ⊗Z/nZ. Since ker(e) ≅ ker(1 − e) and A[n] ≅ ker(e) × ker(1 − e), ker(e) ≅ (Z/nZ)2
T and

therefore by Lemma 5.2.11, there is a level n structure ν. This level structure is not unique,

but the choice of any two level structures ν, ν′ determines an isomorphism g ∶M2(Z/nZ) →

M2(Z/nZ) such that ν′ = νg. Note here that the automorphisms of M2(Z/nZ) are exactly

GL2(Z/nZ).

Suppose now that K is a subgroup of ker(e) which is locally free of rank N and K ′ is

its isomorphic image in ker(1 − e). Make an étale base extension T ′ → T so that there exist

isomorphisms ker(e) ≅ (Z/nZ)2
T ′ ≅ (Z/NZ)2

T ′ × (Z/dZ)2
T ′ and thus ψ ∶ Z/NZT ′ → K and

ψ′ ∶ Z/NZS′ →K ′. Let P2 = ψ(1) and P4 = ψ′(1) as in the proof of Lemma 5.2.11, and let ν

be a level structure extending these. The choice of ν fixingK×K ′ is not unique, but all others

are given by the right multiples by a subgroup of GL2(Z/nZ) ≅ GL2(Z/NZ) ⊕GL2(Z/dZ).

In particular, as we have identified K×K ′ with the subgroup
⎛
⎜⎜
⎝

0 ∗

0 ∗

⎞
⎟⎟
⎠
⊕{0} ofM2(Z/NZ)⊕

M2(Z/dZ), K ×K ′ is fixed under right multiplication by g ∈ GL2(Z/nZ) if and only if g is

upper-triangular modulo N . Therefore we map (A/T ′ , ι,K ×K ′) to (AT ′ , ι, ν). Moreover we

may choose T ′ → T with descent data given by right multiplication by Γ, inducing a map

FD0 (N)(T ) → FD(n)/Γ(T ) by (A/T , ι,K ×K ′) ↦ (A/T , ι, [ν]Γ).

Remark 5.2.15. Note that this definition is independent of the choice of n used in Corollary

5.2.14, so XD
0 (N)S may be defined for any scheme S over Z[1/N].

Definition 5.2.16. Let XD
0 (N)/S be the coarse moduli scheme given in Corollary 5.2.14.

Note that by the definition of a coarse moduli space [DR73, Definition I.8.1], if k = k and

S is the coarse moduli space for a functor F , then F(k) is in natural bijection with S(k).

Definition 5.2.17. If an abelian O-surface (A, ι) over k has a certain property (e.g., being

wm-fixed or superspecial in the sense of Definition 5.3.6) then we may also say that the point

x ∶ Spec(k) →XD
0 (N) corresponding to (A, ι) has that property.
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We now state some theorems on explicit descriptions of XD
0 (N)S over various schemes

S.

Theorem 5.2.18. If S is a flat Z[1/DN]-scheme, then XD
0 (N)/S is smooth.

Proof. This is generally attributed to Y. Morita in his Master’s Thesis [Mor70]. Milne shows

that XD
0 (1)Z[1/D] is smooth [Mil79, p.172]. Over Z[1/DN], the map XD

0 (N) → XD
0 (1) is

étale and therefore XD
0 (N) is smooth over Z[1/DN].

Definition 5.2.19. Let D,N be positive square-free integers and let O be an Eichler order

of level N in BD. Define Pic(D,N) to be the set of isomorphism classes of right O-ideals.

Lemma 4.1.21 shows that Pic(D,N) = {[O]} when BD is indefinite. When BD is definite,

there exist formulas for the size of Pic(D,N) [Piz76, Theorem 16].

Definition 5.2.20. For [I] in Pic(D,N), the length is `([I]) ∶= #(Ol(I)×/ ± 1).

We shall use the length to make sense of the reduction XD
0 (N)Fp when p∣D.

Definition 5.2.21. We say a normal, proper, flat relative curve M/Zp is a Mumford curve

if each component of the special fiber is isomorphic over Fp to P1
Fp and the intersection points

are all Fp-rational double points.

Theorem 5.2.22. Let p ∣D. There is a Mumford curveM(D,N)/Zp whose components over Fp

are in bijection with two copies of Pic(D/p,N) interchanged by an involution ap of M(D,N),

whose intersection points are in bijection with Pic(D/p,Np), and whose dual graph is bipar-

tite. Moreover let x be an intersection point between two components of (M(D,N))Fp corre-

sponding to [I] ∈ Pic(D/p,Np). Then the following holds:

̂OM
(D,N)

,x ≅ Zp[[X,Y ]]/(XY − p`([I])).
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Most importantly, there is an isomorphism φ ∶ XD
0 (N)Zp2

∼→ (M(D,N))Zp2 such that

φwp = apφ. If ⟨σ⟩ = AutZp(Zp2), this isomorphism realizes XD
0 (N)Zp as the étale quotient of

(M(D,N))Zp2 by the action of σap.

Proof. Although this was first done in the case N = 1 by Kurihara [Kur79, §5], a proof

for general level can be found in many places [Ogg85, p.201-202],[Cla03, Corollary 78]. In

particular, the relation between M(D,N) and XD
0 (N)Zp can be deduced as follows. In the

notation of Clark [Cla03, p.54], M(D,N) may be defined as Γ+/P . In the notation of Ogg

[Ogg85, p.201], the dual graph of (M(D,N))Fp may be explicitly given as ∆/Γ+. Also in Ogg’s

notation, Vertices(∆/Γ) = Vertices(∆)/Γ is in natural bijection with Pic(D/p,N) and the

directed edges of ∆/Γ are in bijection with Pic(D/p,Np) where Γ/Γ+ is generated by ap.

Finally we note that for all I, `([I]) may be realized as a certain stabilizer in Γ.

Remark 5.2.23. Thinking of the dual graph in this way yields an algorithm to compute dual

graphs which the author has implemented in MAGMA[BCP97]. If we fix O ⊃ OD, it is possible

to effectively compute representatives {I1, . . . , Ia} for Pic(OD) and {J1, . . . , Jb} for Pic(O).

Under the reduction map ∆/Γ+ →∆/Γ the origin of Jj is the unique Ii such that JjOD ≅ Ii.

Also, via the PrimeIdeal command, we may compute the unique two-sided integral ideal ℘ of

O. Therefore we may compute wp[Jj] = [Jj℘] in the style of Theorem 5.3.14. The terminus

of Jj is then the origin of [Jj℘].

For a ring A of characteristic p, let W (A) denote the Witt vectors of A [Ser79, §II.6].

Recall that N is always assumed to be square-free.

Theorem 5.2.24. Fix a maximal order OD in BD, a square root µ of −D in OD, and let p ∣

N . Let S = Spec(R) be a flat Z(p)-scheme and consider FDµ (N) to be the functor of Definition

5.2.4. Then for all µ, FDµ (N) admits a coarse moduli scheme XD
0 (N)/S. If T is an Fp-scheme

then there is a closed embedding c ∶ XD
0 (N/p)T → XD

0 (N)T . Moreover if T is an S-scheme

and if Φ ∶ XD
0 (N)T → XD

0 (N/p)T is the forgetful map XD
0 (N) ≅ XD

0 (N/p) ×XD
0 (1) X

D
0 (p) →
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XD
0 (N/p), then Φc is the identity and Φwpc is the Frobenius map (A, ι) ↦ (A(p),Frobp,∗ ι)

(see Definition 6.0.3). Moreover, XD
0 (N)T fits into the following diagram

XD
0 (N/p)T

c

''
id

��

XD
0 (N/p)T

wpc

ww
id

��

XD
0 (N)T

Φ

ww

Φwp

''
XD

0 (N/p)T XD
0 (N/p)T

If t is a closed point of T such that k(t) = k(t), the intersection of c(XD
0 (N/p)(k(t))) and

wpc(XD
0 (N/p)(k(t))) is precisely the set of superspecial points (in the sense of Definition

5.3.6), which are in bijection with Pic(Dp,N/p). Moreover, for each superspecial point x over

t corresponding to [I] ∈ Pic(Dp,N/p), the strictly henselian complete local ring of XD
0 (N)

at x is isomorphic to R⊗W (Fp)[[X,Y ]]/(XY − p`([I])).

Proof. The bijection between superspecial points and Pic(Dp,N/p) is Theorem 5.3.10. The

actual result is Theorem 1.7.2 of David Helm’s PhD thesis [Hel03] and was later published

[Hel07, Theorem 10.3]. To recognize this more easily, note that Helm’s embedding Frob is c

here and Helm’s embedding Ver is wpc.

Lemma 5.2.25. The components and singular points of the Fp special fiber can be put into

the following W -equivariant bijections.

Components Intersection Points

p ∣D Pic(D/p,N)∐Pic(D/p,N) Pic(D/p,Np)

p ∣ N Pic(D,N/p)∐Pic(D,N/p) Pic(Dp,N/p)
Moreover, if p ∣ D, the bijection of a set of components with Pic(D/p,N) is W /⟨wp⟩-

equivariant with wp interchanging each. If p ∤ DN , the superspecial points of XD
0 (N)Fp

can be put into W -equivariant bijection with Pic(Dp,N) via the embedding c ∶ XD
0 (N)Fp →

XD
0 (Np)Fp.

53



Proof. This is a summary of a part of Theorem 1.1 in [Mol10]. For p ∣ D this lemma

may be deduced from Theorem 5.3 of [Rib89], which gives a natural bijection between the

components and intersection points and certain types of superspecial surfaces. For p ∣ N ,

this may be deduced from Theorem 1.7.2 in [Hel03].

Let S be an irreducible, faithfully flat Zp-scheme and let η be its generic point. Since

XD
0 (N)/S may have quotient singularities, it may not be a regular scheme. For this reason,

we reserve the word model for a regular proper scheme X/S whose generic fiber is XD
0 (N)η.

We may obtain such a scheme by resolving the singularities on XD
0 (N) [Liu02, Example

8.3.50].

5.3 Superspecial surfaces

Fix a prime number p and a maximal order S in the quaternion algebra Bp over Q ramified

precisely at p and ∞. By a theorem of Deuring, there is a supersingular elliptic curve E over

the algebraic closure F of Fp such that EndF(E) ≅ S [Rib89, p.23].

Definition 5.3.1. Fix E/F, a supersingular elliptic curve with EndF(E) ≅ S. We say that

an abelian variety A/F is supersingular when there is an isogeny A→ Edim(A).

Note that if E′
F is supersingular then E is isogenous to E′ so the above definition does

not depend on the choice of E.

Theorem 5.3.2. [Cla03, Appendix]If A is an abelian surface defined over Fq, then the only

possibilities for End0
Fq(A) are the following.

1. A quartic CM field.

2. A quaternion algebra over an imaginary quadratic number field K in which p splits.

The discriminant of this quaternion algebra is pZK = p1p2.
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3. A product of distinct imaginary quadratic fields K1 ×K2.

4. The product Bp ×K with K an imaginary quadratic number field.

5. M2(K) where K is an imaginary quadratic field.

6. The matrix algebra M2(Bp).

Correspondingly, an abelian surface over Fq is isogenous over Fq to one of the following.

1. An ordinary simple abelian surface AFq (whose endomorphism algebra is an order in a

CM quartic field).

2. A simple abelian surface over AFq with K-quaternionic multiplication.

3. A product of non-isogenous ordinary elliptic curves (E1)Fq and (E2)Fq .

4. The product of an ordinary elliptic curve E0
Fq with a supersingular elliptic curve Es

Fq .

5. The square of an ordinary elliptic curve E0
Fq .

6. The square of a supersingular elliptic curve Es
Fq .

Let O be an Eichler order of level N in BD. If A came equipped with some ι ∶ O →

EndFq(A) and thus we had an embedding BD → End0
Fq(A). If (A1)Fq , (A2)Fq are two non-

isogenous abelian varieties, then End0
Fq(A1×A2) ≅ End0

Fq(A1)⊕End0
Fq(A2) so we can rule out

Theorem 5.3.2(3-4) because simple algebras must map into simple algebras and BD /≅ Bp.

Lemma 5.3.3. If K is an imaginary quadratic field and B is a quaternion algebra, the

following are equivalent.

1. There exists an embedding K ↪ B.

2. There exists an isomorphism B ⊗QK ≅M2(K).
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3. There exists an embedding B ↪M2(K).

Proof. (1) ⇒ (2) ⇒ (3) is obvious. If there exists an embedding B ↪ M2(K) then there

exists an embedding B ⊗QK ↪M2(K) ⊗QK. Note that

M2(K) ⊗QK ≅M2(Q) ⊗QK ⊗QK ≅M2(Q) ⊗Q (K ⊕K) ≅M2(K) ⊕M2(K).

If K does not embed into B then B⊗QK is a division algebra, because if K ≅Q(
√
d) then K

does not embed into B if and only if X2−d is irreducible over B and B⊗QK ≅ B[X]/(X2−d).

Since B ⊗Q K is also a simple algebra it must also be an 8-dimensional sub-algebra of the

16-dimensional algebra M2(K)⊕M2(K). Thus B⊗QK must be a sub-algebra of one of the

copies of M2(K). This is impossible since M2(K) that has zero-divisors and B ⊗Q K does

not.

Let E be as in Definition 5.3.1. Note that End0(E) ≅ Bp. Is it possible that there exists

an embedding BD ↪M2(Bp)? Consider the following:

Lemma 5.3.4. We have an isomorphism of Q-algebras BD ⊗BDp ≅ M2(Bp) if p ∤ D and

BD ⊗BD/p ≅M2(Bp) if p ∣D.

Proof. This is a simple Brauer group calculation. We know BD ⊗BDp (or BD ⊗BD/p) is a

central simple algebra over Q of dimension 16 ramified precisely at p and ∞, that is Mn(Bp)

such that 4n2 = 16.

Corollary 5.3.5. If AFq is an abelian surface and BD ↪ End0
Fq(A), A is isogenous over

Fq to the square of an elliptic curve (E0)Fq . Moreover if p ∣ D this elliptic curve must be

supersingular.

Proof. We have established that Theorem 5.3.2(5-6) can occur and Theorem 5.3.2(3-4) can-

not, hence it suffices to eliminate (1-2). A abelian surface as in Theorem 5.3.2(1) cannot
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admit such an embedding since BD is non-commutative, so we need only ask if BD can be

mapped into the K-quaternion algebra Hp1p2 .

If there exists an embedding BD ↪Hp1p2 , tensoring with K gives BD⊗QK ↪H⊕2
p1p2

. Since

simple algebras must map to simple algebras, we must have BD ⊗QK ≅Hp1p2 by equality of

dimension. If p ∤D this is false since M2(K) is not a division algebra. If p ∣D, there exists

some q ∣ D such that q ≠ p since BD is indefinite. Pick a prime q lying above q. It follows

that BD⊗Kq is a division algebra over K while Hp1p2 ⊗Kq is not. Hence we have established

the existence of an elliptic curve E′ such that A ∼Fq (E′)2.

Finally the last assertion of this corollary is well-known [Rib89, Lemma 4.1].

Definition 5.3.6. We say that an abelian surface A/F is superspecial if A ≅ Ei × Ej with

Ei,Ej supersingular elliptic curves over F.

Lemma 5.3.7. [Rib89, p. 21-22] Suppose that A is a supersingular abelian O-surface over

F with p ∤D. Then A is superspecial.

Note that if A is supersingular, it need not be superspecial. When A is ordinary, we have

the following.

Theorem 5.3.8. If (A/k, ι) is an ordinary QM-abelian surface over a finite field k, then there

exist ordinary elliptic curves E0,E′
0 over k such that A ≅ E0 × E′

0. Moreover if m > 1 then

(A, ι) is wm-fixed (see Definition 5.2.3) if and only if Endk(E0) ≅k Endk(E′
0). Moreover,

Endk(E0) must be isomorphic to one of Z[
√
−m] or Z[1+

√
−m

2 ].

Proof. The first part of the statement is part of a more general theorem of Kani [Kan11,

Theorem 2], who calls ordinary elliptic curves CM. For the second part, note that (A/S, ι) is

wm-fixed if and only if R = Z[
√
−m] (or Z[ζ4] if m = 2) embeds into the commutant of ι(O)

in EndS(A).

Let k be a finite field, A/k be ordinary, and (A, ι) be wm-fixed. Also let W (k) denote

the Witt vectors of k [Ser79, §II.6], which in this case are just a finite étale extension of
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Zp. Then there is a canonical choice of an abelian scheme AW (k) with an isomorphism

f ∶ Endk(A) ∼→ EndW (k)(A) [Mes72, Theorem V.3.3]. Therefore the Serre-Tate canonical lift

(A, f ○ ι) is a QM-abelian surface. Therefore so is AC (the choice of embedding W (k) ↪ C

does not matter [Del69, 7.Théorème]), and there is an embedding of R into Endf(ι(O))(AC).

Then we may find both an optimal embedding ϕ ∶ R′ ↪ O for some imaginary quadratic

order R′ ⊃ R and an isomorphism AC ≅ E1 ×E2 where the Ei’s have CM by R′ and f ○ ι is

given by ϕ [Mol10, p. 6].

Now let K ∶=W (k)⊗Q, which must therefore be a finite unramified extension of Qp. We

can then show that AK ≅ E′
1 × E′

2 where E′
i ⊗C ≅ Ei [Kan11, Lemma 60]. Moreover, each

E′
i has CM by R′ since O ↪ EndK(AK) and we have ϕ ∶ R′ ↪ O. Now, if V is an abelian

variety over K, let NM(V ) denote its Néron model over W (k) [BLR90, Definition I.2.1]. It

follows that since A is an abelian scheme, it is the Néron model of its generic fiber [BLR90,

Proposition I.2.8], and thus

A ≅ NM(AK) ≅ NM(E′
1 ×E′

2) ≅ NM(E′
1) ×NM(E′

2).

Therefore Ak ≅ NM(E′
1)k ×NM(E′

2)k and the theorem is proved.

Theorem 5.3.9. Let E/F be as in Definition 5.3.1 and let A/F be an abelian surface isomor-

phic to the product of any two supersingular elliptic curves. Then A ≅ E ×E.

Proof. This is attributed to Deligne by Shioda [Shi79, Theorem 3.5].

Recall that S is a maximal order in Bp and p ∣ D. Recall also that an (O,S)-bimodule

is a left O-module M which is also a right S-module such that if x ∈ O, y ∈ S, and m ∈M ,

then (xm)y = x(my). This implies that we have homomorphisms O → EndS(M) and

Sop → EndO(M). If both of these homomorphisms are optimal we say that M is an optimal

(O,S) bimodule.
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Theorem 5.3.10. Suppose that O is an Eichler order of square-free level N in an indefinite

quaternion algebra B of discriminant D with (D,N) = 1. There is a bijection between the

following sets.

• superspecial O-abelian surfaces (A, ι)/F up to isomorphism

• Z-rank 8 optimal (O,S) bi-modules up to isomorphism

Proof. Ribet [Rib89, p.38] proved this in the case where O is maximal (and thus optimality is

guaranteed) by showing each were in bijection with the set of homomorphisms f ∶ O →M2(S)

up to GL2(S) multiplication. To get a QM surface from f , consider (E×E,f) and note that

we have EndF(E) ≅ S. To get a bi-module from f , consider S ⊕S given the component-wise

right S action and left O-action by the homomorphism f ∶ O →M2(S) ≅ EndS(S ⊕ S).

Lemma 5.3.11. Let q∣DN and let Q denote the unique two-sided integral ideal of norm q

in O. Under the bijection in Theorem 5.3.10, the action of wq described in Definition 5.2.2

corresponds to the action M ↦Q⊗OM .

Proof. Take the isomorphism class of a superspecial surface (A, ι) to the GL2(S) equivalence

class of the homomorphism ι which corresponds to the bi-moduleM . The bi-module Q⊗OM

is then isomorphic to βqM as an (O,S)-bi-module since Q = βqO = Oβq. Therefore to get

an action of O on this bi-module, we must pre-compose by β−1
q and post-compose by βq.

Definition 5.3.12. Let O,S be Eichler orders in a quaternion algebra over a number field

K. We say that two (O,S)-bi-modules M,N are locally isomorphic if for all places v of K,

Mv ≅ Nv as (Ov,Sv)-bi-modules.

Remark 5.3.13. It is in the condition of local isomorphism that we can keep track of whether

or not a surface (A, ι) is mixed or not [Rib89, p.39].
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Theorem 5.3.14. Let O,S be as in Theorem 5.3.10 and fix an (O,S)-bi-module M . Then

Λ ∶= EndO,S(M) is an Eichler order in either BDp if p ∤D or BD/p if p ∣D. Moreover, if we

fix a bi-module M , there is a bijection between the following two sets

• (O,S)-bi-modules N locally isomorphic to M up to isomorphism and

• Rank one projective right Λ modules up to isomorphism.

Let q ≠ p be prime. This bijection sends the action described in Lemma 5.3.11 to the

action [I] ↦ [IQΛ], where QΛ is the unique two-sided ideal of norm q of Λ.

Proof. The bijection in the case where O is a maximal order is a theorem of Ribet [Rib89,

Theorem 2.3]. The extension to Eichler orders (even of non-square-free level) as well as

showing the way the action of Lemma 5.3.11 transforms is due to Molina [Mol10, Remark

4.11]. His proof depends on showing that HomO,S(N,QO ⊗N) is QΛ.

Definition 5.3.15. Retaining the notation of Theorem 5.3.14, the action [I] ↦ [IQΛ] will

be referred to as wq. Moreover if m is the product of primes ramified in Λ, we define wm as

the composition of all wq ranging over q ∣m.

Corollary 5.3.16. Let m > 1. A superspecial O-abelian surface (A, ι) with corresponding

bi-module M is fixed under the action of wm if and only if there is an embedding of Z[
√
−m]

(or Z[ζ4] if m = 2) into Λ = EndO,S(M).

Proof. By Theorem 5.3.14, (A, ι) is fixed by the action of wm if and only if [∏q∣mQΛ] = [1],

which is to say if and only if the unique two-sided ideal of norm m is principal. Therefore

there is a fixed point if and only if there is an element γ of EndO,S(M) which can serve as the

principal generator. That is, γ2Λ =mΛ so there is a unit u of Λ such that γ2 = um. Therefore,

u ∈ ZF where F =Q(γ), an imaginary quadratic extension of Q. Following Kurihara [Kur79,

Proposition 4-4], u ≠ 1 since Λ is definite, u2+1 = 0 can only happen if m = 2, or u2±u+1 = 0
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can only happen if m = 3. This exhausts all possibilities since Q(u) ⊂ F . If u2 + 1 = 0 then

Z[u] ≅ Z[γ] with u↦ γ + 1. If u2 ± u + 1 = 0 then Z[u] ≅ Z[γ] with u↦ γ ± 1.

This is of particular interest to us because of the following lemma.

Lemma 5.3.17. If (A, ι) is a superspecial abelian O-surface over F, then wp(A, ι) (in the

sense of Theorem 5.3.14) is its Fp2/Fp-Galois conjugate. Equivalently, if P ∶ Spec(F) →

XD
0 (N) corresponds to a superspecial abelian O-surface (A, ι) over F and φ1 ∶ F → F is the

p-th power map, the following diagram commutes.

Spec(F) P //

φ∗1
��

XD
0 (N)

wp

��
Spec(F) P // XD

0 (N)

Proof. If p ∣ D, then for all points P ∶ Spec(F) → XD
0 (N), the square of this Lemma com-

mutes. If p ∣ N , and P ∶ Spec(F) → XD
0 (N) corresponds to an abelian O-surface (AF, ι)

then by Theorem 5.2.24, wpP corresponds to (A(p),Frobp,∗ ι). By Lemma 6.0.4, this corre-

sponds to the point Pφ∗1. If p ∤ DN , we can reduce to the case p ∣ N via the embedding

c ∶XD
0 (N)F →XD

0 (Np)F.

Definition 5.3.18. Let (A, ι) be a superspecial O-abelian surface over F with corresponding

bi-module M . The length of (A, ι) is #(End(O,S)(M)×/ ± 1).

Note that End(O,S)(M) ≅ EndF(A, ι) [Mol10, Equation 3.5]. Therefore if (A, ι) corre-

sponds to a point of XD
0 (N)(F) then this definition agrees with Definition 5.2.20.

Corollary 5.3.19. Let (A, ι) be a mixed superspecial O-abelian surface with corresponding

bi-module M and whose length is divisible by three. Let N ′ be the level of O′ = End(O,S)(M)

and D′ the discriminant of O′ ⊗Q. Then for all p ∣ D′, p = 3 or p ≡ 2 mod 3, and for all

q ∣ N ′, q = 3 or q ≡ 1 mod 3. Moreover, (A, ι) is fixed by wm if and only if m = 1,3,D′N ′ or

D′N ′/3 if 3 ∣D′N ′.
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Proof. Unless D′ = 2,3 and N ′ = 1, the only possible such length is three[Vig80, Proposition

V.3.1], and in each of those cases if p ∣ D′ then p = 2 or p = 3. If (D′,N ′) ≠ (2,1), (3,1), the

length of (A, ι) is three if and only if Z[ζ6] ↪ O′ and the first part of our statement holds

by Theorem 4.1.28.

Regarding Atkin-Lehner fixed points, recall first that any (A, ι) is fixed by w1. If Z[ζ6]

embeds into O′ note that Z[
√
−3] ⊂ Z[ζ6] ↪ O′ so (A, ι) is fixed by w3 if 3 ∣ D′N ′. Now

suppose thatm ≠ 3 so by Corollary 5.3.16 we additionally have an embedding Z[
√
−m] ↪ O′.

Since Z[ζ6] does not contain Z[
√
−m] and vice versa, we have simultaneous embeddings if

and only if m =D′N ′ or D′N ′/3 if 3 ∣D′N ′ by Theorem 4.2.5.

Corollary 5.3.20. Let (A, ι) be a mixed superspecial O-abelian surface with corresponding

bi-module M and whose length is even. Let N ′ be the level of O′ = End(O,S)(M) and D′ the

discriminant of O′ ⊗Q. Then for all p ∣ D′, p = 2 or p ≡ 3 mod 4, and for all q ∣ N ′, q = 2

or q ≡ 1 mod 4. Moreover, (A′, ι′) is fixed by wm if and only if m = 1,2,D′N ′ or D′N ′/2 if

2 ∣D′N ′.

Proof. Recall that unless D′ = 2,3 and N ′ = 1, the only possible even length is two[Vig80,

Proposition V.3.1], and in each of those cases our conditions hold. If (D′,N ′) ≠ (2,1), (3,1),

the length of (A, ι) is two if and only if Z[ζ4] ↪ O′ and the first part of our statement holds

by Theorem 4.1.28.

Regarding Atkin-Lehner fixed points, recall first that any (A, ι) is fixed by w1. If we

have Z[ζ4] ↪ O′ then (A, ι) is fixed by w2 if 2 ∣ D′N ′. Now suppose that m > 2 so by

Corollary 5.3.16 we additionally have an embedding Z[
√
−m] ↪ O′. Since Z[ζ4] does not

contain Z[
√
−m] and vice versa, we have simultaneous embeddings if and only if m = D′N ′

or D′N ′/2 if 2 ∣D′N ′ by Theorem 4.2.1.

Recall now that O is an Eichler order of square-free level N in BD where D is the square-

free product of an even number of primes and N is coprime to D. Let m ∣DN and let p be
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a prime not dividing DN . As usual S is a maximal order in Bp.

Corollary 5.3.21. There is a mixed superspecial abelian O surface (AF2 , ι) fixed by wm if

and only if one of the following occurs.

1. m =DN , q ≡ 3 mod 4 for all q ∣D, and q ≡ 1 mod 4 for all q ∣ N .

2. m =DN ≡ ±3 mod 8, (−2
q ) = −1 for all primes q ∣D, and (−2

q ) = 1 for all primes q ∣ N .

If p ≠ 2, there is a mixed superspecial abelian O surface (AFp , ι) fixed by wm if and only

if one of the following occurs.

1. 2 ∤ D, m = DN , (−DNp ) = −1, (−pq ) = −1 for all q ∣ D, and (−pq ) = 1 for all q ∣ N such

that q ≠ 2.

2. 2 ∣ N , m =DN/2, (−DN/2
p ) = −1, (−pq ) = −1 for all q ∣D, and (−pq ) = 1 for all q ∣ N such

that q ≠ 2.

3. 2 ∣ D, m = DN , p ≡ ±3 mod 8, (−DNp ) = −1, (−pq ) = −1 for all q ∣ (D/2), and (−pq ) = 1

for all q ∣ N .

4. 2 ∣ D, m = DN/2, DN ≡ 2,6,10 mod 16, p ≡ ±3 mod 8, (−DN/2
p ) = −1, (−pq ) = −1 for all

q ∣D, and (−pq ) = 1 for all q ∣ N .

Remark 5.3.22. Note that we deal equally with the cases where 2 ∣ N and 2 ∤ DN if

m =DN .

Proof. By Lemma 5.3.17, a superspecial abelian surface (A/Fp2 , ι) with corresponding bi-

module M is defined over Fp if and only if it is wp-fixed. Therefore there is some (AFp , ι)

fixed by wm if and only if there is some Eichler order of level N in BDp which admits an

embedding of both Z[
√
−m] (or Z[ζ4] if m = 2) and Z[√−p] (or Z[ζ4] if p = 2).
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Let us first assume p = 2. Condition 1 is precisely Corollary 5.3.20 applied to the situation

where (m,2) = 1. Condition 2 is Theorem 4.2.9(5).

Now let us assume p ≠ 2. Conditions 1 and 2 are Theorem 4.2.9(1-2). Similarly condition

3 is Theorem 4.2.9(3) and condition 4 is Theorem 4.2.9(4).
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Chapter 6

Primes of Good Reduction

Throughout this chapter we will fixD the discriminant of an indefinite quaternionQ-algebra,

N a square-free integer coprime to D, an integer m ∣ DN and a prime p ∤ DN . Recall that

XD
0 (N)/Zp has a smooth special fiber by Theorem 5.2.18. Let wm be as in Definition 5.2.2.

Let Zp2 be as in Definition 4.1.14 with ⟨σ⟩ = AutZp(Zp2) and let Z/Zp denote the quotient of

XD
0 (N)Zp2 by the action of wmσ.

If p is split in Q(
√
d), then XD

0 (N) is isomorphic to CD(N,d,m) over Qp. We may then

obtain results on local points without appealing to Z.

If p is inert inQ(
√
d) and CD(N,d,m)/Q is the twist ofXD

0 (N)/Q by wm andQ(
√
d) then

Z is a Zp-model for CD(N,d,m)Qp . This is because it follows from applying the theorem

on étale base change [Liu02, Proposition 10.1.21(c)] to the map XD
0 (N)Zp2 that ZFp is also

smooth.

Some easy results present themselves. For instance we may use Weil’s bounds to show

that we have p-adic points for all but finitely many primes p. Throughout this section,

assume that g is the genus of XD
0 (N)/Q.

Theorem 6.0.1. Suppose that p is unramified in Q(
√
d) and p > 4g2. It follows that

CD(N,d,m)(Qp) ≠ ∅.
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Proof. Recall that Weil’s bounds [Liu02, Exercise 9.1.15] tell us that if X is a smooth pro-

jective curve over Fp then

∣ #X(Fp) − (p + 1) ∣≤ 2g
√
p,

and thus #X(Fp) ≥ p + 1 − 2g
√
p > 4g2 − 4g2 + 1 = 1. Hensel’s Lemma tells us that if we let

Z/Zp be a regular model of CD(N,d,m)Qp and set X = ZFp then CD(N,d,m)(Qp) = Z(Qp)

is nonempty since g = g(CD(N,d,m)Fp).

For p < 4g2, we must use another technique. In the split case we use Shimura’s construc-

tion of the zeta function of XD
0 (N)Fp using Hecke operators to give an exact formula for

the size of XD
0 (N)(Fp). In the inert case, we give a partial answer in terms of superspecial

points.

Definition 6.0.2. Let S be an Fp-scheme and let A/S be an abelian scheme. Let Frobpr ∶

A → A(pr) and Verpr ∶ A(pr) → A be the Frobenius and Verschiebung isogenies, so that

Frobpr Verpr = Verpr Frobpr = [pr] on A(pr) and A respectively.

Definition 6.0.3. Let S be an Fp-scheme and let (A, ι) be an abelian O-surface. By Frobpr,∗ ι

we denote the unique optimal embedding O ↪ EndS(A(pr)) such that for all α ∈ O the

following commutes:

A
ι(α)→ A

Frobpr ↓ ↓ Frobpr

A(pr) Frobpr,∗ ι(α)→ A(pr)

.

Lemma 6.0.4. Let S = Spec(Fp) and φr ∶ S → S be the morphism given by the pr-th power

map. Let (A/S, ι) be a QM-abelian surface as in Definition 5.1.8 corresponding to a point

P ∶ S → XD
0 (N)S. Let P ○ φr ∶ S → S → XD

0 (N)S denote the Galois conjugate point. Then

the QM-abelian surface corresponding to P ○ φr is Frobpr(A, ι).

Proof. Fix an Eichler order O of level N in BD. Note that Frobpr(A, ι) = (A(pr),Frobpr,∗ ι).
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Denote by Verpr,∗ ι ∶ O ↪ EndS(A) the unique optimal embedding such that for all α ∈ O

the following commutes:

A(pr) ι(α)→ A(pr)

Verpr ↓ ↓ Verpr

A
Verpr,∗ ι(α)→ A

.

Suppose that ε ∶ O ↪ EndS(A) is an optimal embedding. Then denote by Ver∗pr ε ∶ O ↪

EndS(A) the unique optimal embedding such that for all α ∈ O the following commutes:

A(pr)
Ver∗pr ε(α)→ A(pr)

Verpr ↓ ↓ Verpr

A
ε(α)→ A

.

We may now combine these to make the following diagram:

A
ι(α)→ A

Frobpr ↓ ↓ Frobpr

A(pr) Frobpr,∗ ι(α)→ A(pr)

Verpr ↓ ↓ Verpr

A
Verpr,∗ Frobpr,∗ ι(α)→ A

.

Noting that Verpr Frobpr = [pr]A and that ι(α)[pr]A = [pr]Aι(α) for all α ∈ O, we must have

Verpr,∗ Frobpr,∗ ι = ι. Therefore, by the uniqueness of fiber products, Frobpr,∗ ι(α) = Ver∗pr ι(α)

and moreover Frobpr(A, ι) = Ver∗pr(A, ι). Since Verpr itself is the pullback of φr along A→ S

[Liu02, p.94] we obtain our result.

We may thus observe the following. Let k is an algebraic extension of Fp and let (A/k, ι)

be a QM abelian surface. Let x0 ∈ XD
0 (N)(k) correspond to (A, ι)k. Furthermore let xr

correspond to Frobpr(A, ι). Then the set of Gal(k/Fp)-conjugates of x0 is {xr ∶ r ≥ 0}.
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6.1 Split primes and the Eichler-Selberg trace formula

Definition 6.1.1. Let S be a Zp-scheme with p ∤ DN . Let XD
0 (N) be defined over S. If

(n,DN) = 1, Tn is the correspondence

XD
0 (Nn)S

Φ1xx Φ2 &&
XD

0 (N)S XD
0 (N)S

where Φ1 is the modular forgetful map and Φ2 = Φ1 ○wn.

The correspondences Tn are commonly known as Hecke correspondences. Let s be a closed

point of S with k(s) = k(s) so thatXD
0 (N)s has a k(s)-rational point so that correspondences

on XD
0 (N) are in bijection with endomorphisms of JD0 (N)s [Mil86, Corollary 6.3]. Thus we

may also use Tn to denote the endomorphism of JD0 (N)s ≅ J(XD
0 (N)s) induced by the map

of sets XD
0 (N)s → Div(XD

0 (N)s) such that P ↦ (Φ2,∗Φ∗
1)P . This operator on JD0 (N)s is

commonly referred to as a Hecke operator. We will explore the case (n,DN) > 1 in section

6.2.

Theorem 6.1.2 (Eichler-Shimura). There is an equality of endomorphisms of JD0 (N)s be-

tween Tp and Frobp +Verp.

Proof. The particularly simple proof given below was sketched by Stein in the case of the

elliptic modular curve X1
0(N) [RS11, Theorem 12.6.4]. We will show in fact that P ↦

(Φ2,∗Φ∗
1)P agrees with Frobp,∗ +Frob∗p as functions XD

0 (N)Fp → Div(XD
0 (N)Fp). First we

note that if the above holds for all but finitely many points, then by continuity we have

our result. Therefore, it suffices to check that we have equality away from the superspecial

points.

By Theorem 5.2.24, XD
0 (Np)os = c(XD

0 (N)os)∐wpc(XD
0 (N)os) where Xo refers to remov-

ing the superspecial points, c is the natural embedding XD
0 (N) ↪ XD

0 (Np) and wp is the
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p-th Atkin-Lehner involution.

It follows that if P ∈XD
0 (N)os then

(Φ∗
1P ) = c∗(c∗(Φ∗

1P )) + (wpc)∗(wpc)∗(Φ∗
1P ) = c∗(Φ1c)∗P + (wpc)∗(Φ1wpc)∗P.

Recall now that Φ1c is the identity and Φwpc is the Frobenius Frobp . Thus Φ∗
1P = c∗(P ) +

(wpc)∗(Frob∗p P ). This implies that

Φ2,∗Φ
∗
1P = Φ1,∗wp,∗Φ

∗
1P

= Φ1,∗wp,∗(c∗(P ) + (wpc)∗(Frob∗p P ))

= Φ1,∗(wp,∗c∗(P ) + c∗(Frob∗p P ))

= Φ1,∗wp,∗c∗P +Φ1,∗c∗ Frob∗p P

= Frobp,∗P + Frob∗p P

Now note that Frobp,∗ as a function XD
0 (N)Fp → Div(XD

0 (N)Fp induces the Frobenius

isogeny Frobp on JD0 (N). Note also that since Frobp,∗ Frob∗pH = pH for all divisors H on

XD
0 (N)s [Liu02, Proposition 9.2.11], Frob∗p induces Verp = Frobtp, the unique dual isogeny to

Frobp, on JD0 (N)Fp .

Definition 6.1.3. If CFp is a smooth, projective curve, we may define the zeta function of

C as

Z(C,x) ∶= exp(
∞
∑
r=1

#C(Fpr)
xr

r
) .

Shimura [Shi67] proved that the trace of Hecke operators carries a deep relation to the

number of points of a modular curve over a finite field. Namely he showed the following

explicit formula for the zeta function.
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Theorem 6.1.4. If we fix a prime ` ∤ pDN , then

Z(XD
0 (N)Fp , x) =

detH0(XD
0 (N),Ω)(Ig − Tpx + px2Ig)
(1 − x)(1 − px) . (6.1)

Proof. First we note that for a complex curve X, there is a natural isomorphism between

H0(X,Ω) and H0(X,Ω)∨ given by the map ω ↦ ∫X ⋅ ∧ ω. Here Ω is the canonical sheaf,

which in this case is the sheaf of holomorphic differential one-forms. Therefore the standard

Hodge decomposition of H1(X(C)) in the classical topology can be written as H0(X,Ω) ⊕

H0(X,Ω)∨. Suppose now X is the generic fiber of a smooth and proper relative curve X

over a mixed-characteristic discrete valuation ring with separably closed residue field and

X̃ is the special fiber of X . Then, we can invoke smooth and proper base change [Mil80,

Corollary VI.4.2] twice to realize

H1(X̃,Q`) ≅ H1(X,Q`)

≅ H1(X(C))

≅ H1(X,Ω) ⊕H1(X,Ω)

≅ H1(X,Ω) ⊕H1(X,Ω)∨

≅ H1(X̃,Ω) ⊕H1(X̃,Ω)∨

Now we invoke the Weil Conjectures for curves [Mil80, Corollary V.2.6]. That is,

Zp(XD
0 (N)s, x) =

2

∏
i=0

det (Id − xFrobp ∣H i(XD
0 (N)s,Q`))

(−1)(1+i)

We now recall briefly that since dimXD
0 (N)s = 1, (Id − xFrobp ∣ H0(XD

0 (N)s,Q`)) =

(1 − x) and (Id − xFrobp ∣ H2(XD
0 (N)s,Q`)) = (1 − px). However, since H1(XD

0 (N)s,Q`) ≅
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H0(XD
0 (N)s,Ω)⊕H0(XD

0 (N)s,Ω)∨ ≅H0(JD0 (N)s,Ω)⊕H0(JD0 (N)s,Ω)∨[Mil86, Proposition

2.2], we have (Id − xFrobp ∣H1(XD
0 (N)s,Q`)) equal to

= (Id − xFrobp ∣H0(JD0 (N)s,Ω))(Id − xFrob∨p ∣H0(JD0 (N)s,Ω))

= (Id − x(Frobp +Verp) + x2 Frobp Verp) ∣H0(XD
0 (N),Ω)

= (Id − Tpx + px2Id) ∣H0(XD
0 (N),Ω) .

Corollary 6.1.5. [JL85, Proposition 2.1] If r > 1 then

#XD
0 (N)(Fpr)) = pr + 1 − tr(Tpr) + p tr(Tpr−2) (6.2)

and if r = 1,

#XD
0 (N)(Fp)) = p + 1 − tr(Tp) (6.3)

Let σ1 as the usual divisor sum function. Let w,f be as in Definition 4.1.25 and eD,N be

as in Definition 4.1.27.

Theorem 6.1.6. [Eichler’s Trace Formula, [Eic56, §4]] Let D be the discriminant of an

indefinite rational quaternion algebra, N a square-free integer coprime to D and ` a prime

not dividing DN . Let tr(Tn) denote the trace of Tn on H0(XD
0 (N)C,Q`).

If n is not a square and (n,DN) = 1, then

tr(Tn) = σ1(n) −
⌊2

√
n⌋

∑
s=−⌊2

√
n⌋

∑
f ∣f(s2−4n)

eD,N ( s2−4n
f2 )

w ( s2−4n
f2 )

. (6.4)

Corollary 6.1.7.

#XD
0 (N)(Fp) =

⌊2√p⌋

∑
s=−⌊2√p⌋

∑
f ∣f(s2−4p)

eD,N ( s2−4p
f2 )

w ( s2−4p
f2 )
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6.2 Inert primes and the Eichler-Selberg trace formula

We shall briefly follow Rotger, Skorobogatov and Yafaev [RSY05, §2] to obtain a formula

for the number of points of CD(N,d,m)(Fp). This will not give a strict numerical criterion

for the presence or absence of points, but it will give an exact formula as we will see in

Theorem 6.2.6. In certain cases however, such as when m = DN , we will be able to use the

properties of superspecial points to get numerical criterion, as in Corollary 6.3.2. We begin

by extending the definition of Hecke operators Tn.

Suppose that (DN, n
(n,DN)) = 1, m = (n,DN)∣DN and n′ = n

(n,DN) . Let S be a Zp-scheme

and Φ1 ∶ XD
0 (Nn′)S → XD

0 (N)S be the forgetful map. By abuse of notation, let wm denote

the Atkin-Lehner involution on either XD
0 (Nn′)S or XD

0 (N)S. Note that Φ1wm = wmΦ1, so

if s is a closed point of S with k(s) = k(s), Tn′wm = wmTn′ ∶XD
0 (N)s → Div(XD

0 (N)s).

Definition 6.2.1. Suppose that (DN, n
(n,DN)) = 1, m = (n,DN)∣DN and n′ = n

(n,DN) . Then

define Tn = wmTn′.

Let m ∣DN and consider the quotient (XD
0 (N)/wm)s. Let Ω denote the canonical sheaf

of (XD
0 (N)s. Since wm is an involution, H0(XD

0 (N)s,Ω) decomposes into the direct sum

of the +1 and −1 eigenspaces under its action. Note that H0((XD
0 (N)/wm)s,Ω) is the +1

eigenspace.

Suppose that v ∈ H0(XD
0 (N)s,Ω) such that wmv = v. Then wmTpv = Tpwmv = Tpv and

therefore Tp acts on H0((XD
0 (N)/wm)s,Ω).

Definition 6.2.2. If p ∤ DN and m∣DN , then by T (m)
p we denote the restriction of Tp to

H0((XD
0 (N)/wm)s,Ω).

Note that since T (m)
p is just Tp on a smaller vector space,

T
(m)
p = Frobp +Verp
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on Jac((XD
0 (N)/wm)s) by Theorem 6.1.2.

Corollary 6.2.3. Let g′ be the genus of (XD
0 (N))/wm)Fp. The zeta function of the quotient

curve is

Zp(XD
0 (N)/wm, s) =

detH0(XD
0 (N)/wm,Ω)(Ig′ − T

(m)
p s + ps2Ig′)

(1 − s)(1 − ps) .

Proof. Since T (m)
p = Frobp +Verp on Jac((XD

0 (N)/wm)s), we may say that Eichler-Shimura

holds on (XD
0 (N)/wm)Fp . Therefore we may reuse the proof of Theorem 6.1.4.

We may thus see that if r > 1 then

#(XD
0 (N)/wm)(Fpr) = pr + 1 − tr(T (m)

pr ) + p tr(T (m)
pr−2),

and

#(XD
0 (N)/wm)(Fp) = p + 1 − tr(T (m)

p ).

We now reinterpret these quantities. If we let u1, . . . , ug′ be a basis for the +1 eigenspace

of wm and v1, . . . , vg−g′ a basis for the −1 eigenspace, we have

Tprwm(a1u1 + ⋅ ⋅ ⋅ + agvg−g′) = Tpr(a1u1 + ⋅ ⋅ ⋅ + ag′ug′)

− Tpr(ag′+1v1 + ⋅ ⋅ ⋅ + agvg−g′)

Thus Tpr + Tprm = 2T
(m)
pr and so

tr(T (m)
pr ) = tr(Tp

r + Tprm
2

) (6.5)

= 1

2
(tr(Tpr) + tr(Tprm)) (6.6)

We may thus explicitly compute the traces on the quotient curve using Eichler’s Trace

Formula 6.1.6 to obtain the following.
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Theorem 6.2.4. If r > 1 then

#(XD
0 (N)/wm)(Fpr) = pr + 1 − tr(Tpr) + tr(Tprm)

2
+ p(tr(Tp

r−2) + tr(Tpr−2m))
2

(6.7)

and if r = 1 then

#(XD
0 (N)/wm)(Fp) = p + 1 − tr(Tp) + tr(Tpm)

2
(6.8)

We may again use the trace formula to determine CD(N,d,m)(Fpr), though in a some-

what oblique way. Consider that for any prime number p if (d
p
) = 1 then Q(

√
d) ↪ Qp

by Hensel’s Lemma. Hence CD(N,d,m) ≅Qp X
D
0 (N) since they’re already isomorphic over

Q(
√
d) by definition.

Suppose alternately that (d
p
) = −1. Consider the following:

Lemma 6.2.5.

2#XD
0 (N)/wm(Fpr) = #XD

0 (N)(Fpr) +#CD(N,d,m)(Fpr) (6.9)

Proof. Consider the quotient maps

XD
0 (N)(Fpr) CD(N,d,m)(Fpr)

↘ ↙

XD
0 (N)/wm(Fpr)

Consider that XD
0 (N)/wm(Fpr) is made up of the set of equivalence classes [P,Q] such

that P,Q ∈ XD
0 (N)(Fpr), wm(P ) = Q and for all σ ∈ Gal(Fpr/Fpr) either σP = Q and

σQ = P or σP = P and σQ = Q. In either case, P,Q ∈ Fp2r and we may fix σ as the

generator of Gal(Fp2r/Fpr). The former case indicates that wmσP = wmQ = P and thus

P,Q ∈ CD(N,d,m)(Fpr) while the latter case indicates that P,Q ∈XD
0 (N)(Fpr).

If P ≠ Q then [P,Q] is a point over which the (geometric) map XD
0 (N) → XD

0 (N)/wm

74



is unramified, and so gives rise to two points in either XD
0 (N)(Fpr) or CD(N,d,m)(Fpr) as

the case may be. If P = Q then [P,Q] = [P,P ] is a ramification point for the above map.

Note however that we have both wmσP = P and σP = P so P lies both on XD
0 (N)(Fpr) and

CD(N,d,m)(Fpr). In either case a rational point on XD
0 (N)/wm gives rise to two rational

points on the disjoint union of the two Fpr twists of XD
0 (N).

We are instantly left with the following result:

Theorem 6.2.6. Let p be inert in Q(
√
d) and let m∣DN . If r > 1 then

#CD(N,d,m)(Fpr) = pr + 1 − tr(Tprm) + p tr(Tpr−2m) (6.10)

and if r = 1 then

#CD(N,d,m)(Fp) = p + 1 − tr(Tpm) (6.11)

Proof.

#CD(N,d,m)(Fpr) = 2#XD
0 (N)/wm(Fpr) −#XD

0 (N)(Fpr)

= 2pr + 2 − tr(Tpr) − tr(Tprm)

+ p tr(Tpr−2) + p tr(Tpr−2m)

− (pr + 1 − tr(Tpr) + p tr(Tpr−2))

= pr + 1 − tr(Tprm) + p tr(Tpr−2m)
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6.3 Inert primes and superspecial points

We now use the theory of superspecial points to gain explicit criteria for the presence of

rational points in certain situations. Recall that the superspecial points of XD
0 (N)(Fp) are

in bijection with Pic(Dp,N) via the embedding c ∶XD
0 (N)Fp →XD

0 (Np)Fp by Lemma 5.2.25.

Recall also that the action of Frobp ∈ Gal(Fp/Fp) on the superspecial points in XD
0 (N)(Fp)

is given by wp by Lemma 5.3.17.

Theorem 6.3.1. If p ∤DN is inert in Q(
√
d), then CD(N,d,m)(Qp) is nonempty if either

• mp /≡ 3 mod 4 and eDp,N(−4mp) ≠ 0, or

• mp ≡ 3 mod 4 and one of eDp,N(−4mp) or eDp,N(−mp) is nonzero, or

• p = 2, m = 1, and one of eDp,N(−4), eDp,N(−8) is nonzero.

Proof. Let φ1 denote the p-th power map on Fp. We wish to determine if Z(Fp) contains a

superspecial point. That is, we wish to determine if Z(Fp) contains a point invariant under

the action of Galois which corresponds (via the bijection of Z(Fp) with XD
0 (N)(Fp)) to a

superspecial abelian surface over Fp. This occurs if and only if there is a superspecial point

P ∈XD
0 (N)(Fp) such that P = wmPφ∗1, which in this context becomes wmpP .

By Corollary 5.3.16, there is a superspecial wmp-fixed point if and only if there is an

embedding of Z[√−mp] into the Endι(O)(A) of the superspecial abelian surface (A, ι) cor-

responding to P , or possibly Z[ζ4] if mp = 2. Now recall that every embedding of an order

R induces an optimal embedding of some R′ ⊃ R.

If mp = 2 then both Z[ζ4] and Z[
√
−2] are maximal orders, of discriminants −4 and −8

respectively. If mp ≡ 1 mod 4, then Z[√−mp] is maximal and of discriminant −4mp.

If mp ≡ 3 mod 4 then Z[√−mp] again has discriminant −4mp but is no longer maximal.

It is contained in Z[1+√−mp
2 ], which is maximal and has discriminant −mp. Since there are

no intermediate orders, this completes the proof.
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Corollary 6.3.2. If p ∤ DN is inert in Q(
√
d), CD(N,d,m)(Qp) is nonempty when m =

DN . Moreover, Z(Fp) contains a point whose base change to Fp corresponds to a superspecial

surface.

Proof. It suffices to note the following.

eDp,N(−4DNp) = h(−4DNp) ∏
q∣Dp

(1 − {−4DNp

q
})∏

q∣N
(1 + {−4DNp

q
})

= h(−4DNp) ∏
q∣Dp

(1)∏
q∣N

(1).

Since eDp,N(−4DNp) ≠ 0, Theorem 6.3.1 implies that CD(N,d,m)(Qp) is nonempty.
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Chapter 7

Ramified Primes

Throughout this chapter we will fixD the discriminant of an indefinite quaternionQ-algebra,

N a squarefree integer coprime to D, a squarefree integer d, an integer m ∣DN and a prime

p ∤ DN ramified in Q(
√
d). Let XD

0 (N)/Q be given by Corollary 5.2.14. Let wm be as

in Definition 5.2.2. Let CD(N,d,m)/Q the twist of XD
0 (N) by Q(

√
d) and wm. If ∆ < 0,

let H∆(X) ∈ Z[X] [Cox89, p.285] denote the Hilbert Class Polynomial of discriminant ∆,

and recall that this is simply the polynomial whose roots are the j-invariants of elliptic

curves with complex multiplication by R∆ in the sense of Definition 4.1.25. Recall eD,N from

Definition 4.1.27. The purpose of this chapter is to prove the following theorem.

Theorem 7.0.1. Suppose that p ∤ 2DN is a prime which is ramified in Q(
√
d) and m∣DN .

Then CD(N,d,m)(Qp) ≠ ∅ if and only if one of the following occurs.

1. eD,N(−4m) ≠ 0, (−mp ) = 1, and H−4m(X) = 0 has a root modulo p

2. m ≡ 3 mod 4, eD,N(−m) ≠ 0, (−mp ) = 1, and H−m(X) = 0 has a root modulo p

3. m = DN , 2 ∤ D, (−DNp ) = −1, (−pq ) = −1 for all primes q ∣ D, and (−pq ) = 1 for all

primes q ∣ N such that q ≠ 2
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4. m = DN/2, 2 ∣ N , (−DN/2
p ) = −1, (−pq ) = −1 for all primes q ∣ D, and (−pq ) = 1 for all

primes q ∣ N such that q ≠ 2

5. m = DN , 2 ∣ D, p ≡ ±3 mod 8, (−DNp ) = −1, (−pq ) = −1 for all primes q ∣ (D/2), and

(−pq ) = 1 for all primes q ∣ N .

6. m =DN/2, 2 ∣D, DN ≡ 2,6, or 10 mod 16, p ≡ ±3 mod 8, (−DN/2
p ) = −1, (−pq ) = −1 for

all primes q ∣D, and (−pq ) = 1 for all primes q ∣ N .

Compare this to the following theorem.

Theorem 7.0.2. Let p be a prime, (p,2N) = 1, D = 1, and m = N . Then CD(N,d,m)(Qp)

is nonempty if and only if either H−4m(X) = 0 has a root modulo p.

Proof. Suppose that p > 2, D = 1 andm = N . By [Ozm09, Proposition 5.5], CD(N,d,m)(Qp)

is nonempty if and only if there is a prime ν of B =Q[X]/(H−4m(X)) such that f(ν∣p) = 1.

But then since p ≠ 2 does not divide N , p is unramified in B. Therefore there exists a prime

ν such that f(ν∣p) = 1 if and only if H−4m(X) = 0 has a root modulo p [Ser79, Proposition

15].

We may combine the results of Theorem 7.0.1(3) with those of Theorem 7.0.2 to yield

the following.

Corollary 7.0.3. Let p ≠ 2 be a prime and let N be a squarefree integer such that (−Np ) = −1.

It follows that H−4N(X) has a root modulo p if and only if for all odd primes q ∣ N , (−pq ) = 1.

To establish Theorem 7.0.1 and Corollary 7.0.3, we determine a regular model over Zp of

CD(N,d,m)Qp . We shall indeed show the following.

Theorem 7.0.4. There is a regular model X/Zp of CD(N,d,m)Qp with the following prop-

erties. There is an equality of divisors on X ,

XFp =
b

∑
i=0

diΓi,
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such that each Γi is defined over Fp and is prime, each di ≤ 2, d0 = 2, Γ0 ≅ (XD
0 (N)/wm)Fp,

and for all i > 0, pa(Γi) = 0.

Suppose additionally that p ≠ 2. Then for all i > 0, di = 1 and Γ0 intersects with Γi in a

unique point Qi is such that ∑b
i=1Qi is the branch divisor of XD

0 (N)Fp → (XD
0 (N)/wm)Fp.

In fact, we shall show that if p ≠ 2, X is the blowup of a scheme Z/Zp such that there is an

equality of divisors ZFp = 2Γ where Γ ≅ (XD
0 (N)/wm)Fp . Therefore there are smooth points

of X(Fp) if and only if Fp = Fp(Pi) = Fp(Γi) since Γi ≅ P1
Fp(Qi) [Liu02, Theorem 8.1.19(b)].

After constructing Z and X , we will describe Fp(Qi), i.e., the Fp-rationality of wm-fixed

points.

7.1 The first steps towards forming a model

Let us begin with a few foundational facts.

Lemma 7.1.1. The modular automorphism wm ∶ XD
0 (N) → XD

0 (N) (over any base) is the

identity map precisely when m = 1. In particular if m ≠ 1 and k is any field, wm ∶XD
0 (N)k →

XD
0 (N)k is not the identity.

Proof. This is simply a consequence of the action of wm as in Definition 5.2.2 on QM abelian

surfaces up to isomorphism.

Lemma 7.1.2. Let X/K be a curve with potentially semistable reduction realized by a cyclic

totally ramified extension L/K of local fields. Let k be their common residue field and let

S/R be the corresponding extension of discrete valuation rings. Let Y → Spec(S) be a regular

model of XL, Gal(L/K) = ⟨σ⟩ and assume that there exists some α an automorphism of Y

above σ ∶ Spec(S) → Spec(S) extending the Galois action on XL.

1. The quotient Z = Y/⟨α⟩ is a scheme of relative dimension one over Spec(R) with

generic fiber X,
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2. Let ξ1, . . . , ξn be the generic points of the irreducible components C1, . . . ,Cn of Yk lying

above a component C of Zk with generic point ξ. Let Di = D(ξi∣ξ), Ii = I(ξi∣ξ) denote

the decomposition and inertia groups, respectively. Then the multiplicity of ξ in Zk is

∣Di∣n/∣Ii∣.

Proof. That Z is a Spec(R)-scheme follows from the universal properties of the quotient

as outlined in [Vie77, 3.6]. In particular by the definition of τ lying above σ, the map

Y → Spec(S) → Spec(R) is τ -invariant and thus induces a map Z → Spec(R).

To obtain the multiplicities, we recall [Liu02, VIII.3.9] that the multiplicity of ξi is vi(s)

where vi is the discrete valuation of OY,ξi and s is a uniformizer of S. As Y has semistable

reduction, vi(s) = 1 for all i. Likewise the multiplicity of ξ is v(r) where v is the discrete

valuation of OZ,ξ and r is a uniformizer of R. As Y → Z is Galois, there are positive integers

e, q such that vi ∣R= ev and q =∣Di/Ii ∣ for all i and [L ∶K] = eqn. As L/K is totally ramified,

rS = seqnS. It then follows that

ev(r) = vi(r) = vi(seqn) = eqnvi(s)

and thus

v(r) = qnvi(s) = qn =∣Di/Ii ∣ n =∣Di ∣ n/ ∣ Ii ∣ .

Lemma 7.1.3. Under the hypotheses of Lemma 7.1.2, the non-regular points of Z are pre-

cisely the branch points Q1, . . . ,Qb of Yk → Zk

Proof. Since XL →X is étale the ramification points of f are exactly P1 ∶= f−1(Q1), . . . , Pb ∶=

f−1(Qb). To see this, note that Z is Noetherian, and thus normal [Kir10, Proposition 2.2.1]

and thus geometrically unibranch. Since dimY = dimZ we find that f is étale away from

P1, . . . , Pb [Gro64, IV.18.10.1] and thus Z is regular outside of f(P1), . . . , f(Pb). Conversely
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if these points were regular, f would be flat [AK70, V.3.6] and in that case the branch

locus is either empty or pure of codimension one [AK70, VI.6.8] and thus dimension one.

But this cannot be as we just proved the branch locus of f was the zero-dimensional set

{f(P1), . . . , f(Pb)} by showing that the ramification locus of f is precisely the domain on

which f is not étale.

Now we apply these lemmas to our situation. If K = Qp and L = Qp(
√
d) then R = Zp,

S = Zp[
√
d], k = Fp, and σ(

√
d) = −

√
d. If additionally X = XD

0 (N)Qp , then YFp is smooth

and we may realize Y ≅XD
0 (N)/Zp[√d] from Corollary 5.2.14. If we take α = wm ○σ and take

Z = Y/⟨α⟩, then the following holds.

Theorem 7.1.4. The scheme Z/Zp = Y/⟨α⟩ has generic fiber CD(N,d,m)Qp, and there is

an equality of divisors ZFp = 2Γ where Γ ≅ (XD
0 (N)/wm)Fp.

Proof. The scheme Z was constructed to have CD(N,d,m)Qp as its generic fiber. Since

there is a unique component of YFp , there is a unique component of ZFp so n = 1. Let ξ′, ξ

be the generic points of the components of YFp and ZFp respectively. Then D(ξ′∣ξ) = ⟨α⟩

since α preserves YFp . By Lemma 7.1.1, I(ξ′∣ξ) = {id}, so the multiplicity of the component

corresponding to ξ is 2.

To determine the Γ such that 2Γ = ZFp , recall that the pushforward under f ∶ Y → Z

of YFp forms a prime divisor of Z in ZFp and must therefore be Γ. To determine this

pushforward, note that the induced action of σ on Spec(Fp) is trivial and consider the

following commutative square.

Y α //

��

Y

��

Spec(Zp[
√
d]) σ // Spec(Zp[

√
d])
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The fiber product of this square with Spec(Fp) → Spec(Zp[
√
d]) is simply the Spec(Fp)-

involution wm on YFp =XD
0 (N)Fp . This is to say that it becomes the following triangle.

XD
0 (N)Fp

wm //

&&

XD
0 (N)Fp

xx
Spec(Fp)

It follows that f , when restricted to YFp becomes simply the quotient map XD
0 (N)Fp →

(XD
0 (N)/wm)Fp , and therefore Γ ≅ (XD

0 (N)/wm)Fp .

We note that by Lemma 7.1.3, that Z is not generally a regular scheme, and may require

some singularities to be resolved. To make this easier, we fix the following.

Definition 7.1.5. Fix an ordering {Qi} of the branch points of the quotient map f ∶

XD
0 (N)Fp → (XD

0 (N)/wm)Fp. Let Pi denote the unique preimage of Qi under f .

Note that by definition, the Pi are exactly the points of XD
0 (N)Fp fixed by wm. We will

explicitly describe a desingularization in the strong sense [Liu02, Definition 8.3.39] of Z and

thus a regular model of CD(N,d,m)Qp , at least when p ≠ 2. However, we will first describe

the branch points {Qi} and their Fp-rationality.

7.2 Atkin-Lehner fixed points over finite fields

Throughout this section, we will keep the notation of Definition 7.1.5. Note that since

Qp[
√
d] is totally ramified over Qp, Fp(Qi) ≅ Fp(Pi). It can be shown [Liu02, Corollary

8.3.51] that Z admits a desingularization in the strong sense [Liu02, Definition 8.3.39]. The

following lemma shows that if we make an assumption on the form of a desingularization of

Z, we can draw conclusions about Z(Qp).

83



Lemma 7.2.1. Let π ∶ X → Z be a desingularization in the strong sense and assume that

for all i, π−1(Qi) is a chain of rational curves such that at least one has multiplicity one.

Then CD(N,d,m)(Qp) is nonempty if and only if either

1. (−mp ) = 1 and one of the following holds:

• m = 2 or

• H−4m(X) has a root modulo p or

• m ≡ 3 mod 4 and H−m(X) has a root modulo p,

2. or (−mp ) = −1 and one of the conditions of Corollary 5.3.21 are satisfied.

Proof. Note first that each component in π−1(Qi) must be isomorphic to P1
Fp(Qi). Therefore

by our assumption on π, Fp = Fp(Qi) if and only if there is a reduced copy of P1
Fp in π

−1(Qi).

By Corollary 5.3.5, any QM abelian surface over a finite field must be either ordinary or

supersingular. Suppose first that (A, ι) is supersingular and fixed by wm. By Lemma 5.3.7, if

(A, ι) is a supersingular QM-abelian surface over a finite field of characteristic p, then (A, ι)

is superspecial. Therefore, one of the conditions of Corollary 5.3.21 hold if and only if there

is a QM abelian surface (A, ι) fixed by wm whose corresponding point Pi is Fp-rational.

Now suppose that (A, ι) is an ordinary QM-abelian surface over a finite field k fixed by

wm. By Theorem 5.3.8, there are elliptic curves E,E′ such that Endk(E) ≅ Endk(E′) ≅ R′ =

Z[
√
−m] or Z[1+

√
−m

2 ] (or Z[ζ4] if m = 2) and A ≅ E ×E′. Now note that the j-invariants of

E,E′ are both roots of H−4m(X) mod p, H−m(X) mod p if m ≡ 3 mod 4, or H−4(X) if m = 2.

Note also that if m = 2, then H−4(X) and H−8(X) have degree one. Since the j-invariants

of E and E′ are defined over Fp, (A, ι) is defined over Fp. Therefore if Pi corresponds to the

surface (A, ι) then Fp(Pi) = Fp.

Since the reduction modulo a prime lying above p of an elliptic curve with CM by R∆ is

ordinary if and only if (∆
p ) = 1 [Lan87, Theorem 13.12], we obtain that (−mp ) = 1 if and only
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if (A, ι) is ordinary.

We have thus shown that either condition 1 or condition 2 holds if and only if there is a

reduced copy of P1
Fp in some π−1(Qi). Since the strict transform of Γ in X has multiplicity

two, the presence of a reduced copy of P1
Fp in some π−1(Qi) is equivalent to the presence of

a smooth point of X(Fp). By Hensel’s Lemma [JL85, Lemma 1.1], the presence of a smooth

point in X(Fp) is equivalent to X(Qp) and thus CD(N,d,m)(Qp) being nonempty.

Remark 7.2.2. Note that by Lemma 7.2.1, it is necessary in any case that some Qi is

Fp-rational in order for CD(N,d,m)(Qp) to be nonempty.

7.3 Tame Potential Good Reduction

In this section we construct a regular model of CD(N,d,m)Qp . Let XZp ∶= Bl{Qi}(Z), the

blowup of Z along the branch divisor of YFp → ZFp [Liu02, Definition 8.1.1]. Since the blowup

construction gives a map X → Z which is an isomorphism away from {Qi}, X is a regular

model if and only if X → Z is a desingularization in the strong sense if and only if X is a

regular scheme.

To see that this is a regular scheme, let R = Znrp , a strict henselization of Zp. We will

construct in this section an auxiliary scheme X ′
/R
. If we can show that XR ≅ X ′, it will follow

that X is regular [CES03, Lemma 2.1.1]. Thus, the hypotheses of Lemma 7.2.1 would be

satisfied and thus Theorem 7.0.1 would be proved.

We first recall the following.

Definition 7.3.1. [CES03, Definition 2.3.6] Let X ′
/D be a normal curve with smooth generic

fiber over a connected Dedekind scheme D. Let also δ be a closed point of D with perfect

residue field, let ζ be a generator of µn(k(δ)), and let πδ be a uniformizer for δ in OD,δ.

A closed point x′ in a closed fiber X ′
δ is a tame cyclic quotient singularity of type (n, r) if

there are non-negative integers n, r,m1,m2 such that ÔshX′,x′ is isomorphic to the subalgebra
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of µn(k(δ))-invariants in ÔshD,δ[[t1, t2]]/(t
m1
1 tm2

2 − πδ) under the action t1 ↦ ζt1, t2 ↦ ζrt2,

subject to the following.

• The integer n is greater than one and not divisible by char(k(δ)).

• The integer r is coprime to n.

• The integers m1 is positive and m1 ≡ −rm2 mod n.

Also fix S = R[
√
d], k′ the residue field of S, k the residue field of R, and note that both

k and k′ must be isomorphic to Fp. We now note the following.

Lemma 7.3.2. Suppose that p ≠ 2 and let Q be a point of Qi×ZpR. Then Q is a tame cyclic

quotient singularity with n = 2 and r = 1.

Proof. By Lemma 7.1.1, the action of wm at a wm-fixed point of XD
0 (N)k is nontrivial. Let α

on YS denote the extension of α on Y . We wish to show that ÔshZ,Q is the ring of invariants of

a µ2 (or since p ≠ 2, Z/2Z) action. Fix an isomorphism S[[X]] ≅ ÔY
S
,P where P is the unique

preimage of Q under f ∶ YS → ZR. Since wm is always Galois-equivariant, α(
√
d) = −

√
d.

Since α induces an isomorphism S[[T ]] ≅ S[[α(T )]], α(T ) = Pα(T ) = ∑j≥1αjT
j. Since

α is an involution, α1 = −1. Note then that since p ≠ 2, α(T ) − T = −2T (1 + O(T )), i.e.

α(T ) − T ≡ −2T mod (T 2). Since −2 /∈ mS, S[[T ]] ≅ S[[T ′]] where T ′ ∶= α(T ) − T . Note

also that α(T ′) = α(α(T ) − T ) = T − α(T ) = −(T ′). Therefore
√
d and T ′ form a basis of

uniformizers for the two-dimensional local ring ÔY
S
,P and α acts as −1 on both

√
d and T ′.

Note now that ÔZ
R
,Q is the ring of invariants of the µ2-action given by α on S[[T ′]].

Recall that since p ≠ 2 is a uniformizer for R and p is ramified in Q(
√
d) where d is square-

free, d is also a uniformizer. Therefore S[[T ′]] ≅ R[[t1, t2]]/(tm1
1 tm2

2 −d) wherem1 = 2, t2 = T ′,

and m2 = 0. It follows that Q is a tame cyclic quotient singularity with n = 2 and r = 1.

From here on, let b′ be such that ∑b
i=1Qi ×R = ∑b′

i=1Q
′
i.
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Definition 7.3.3. Let R be a discrete valuation ring with algebraically closed residue field,

X/R be a scheme, and P a tame cyclic quotient singularity of X of type n, r. Then [CES03,

Theorem 2.4.1] we can inductively produce a chain of divisors E1, . . .Eλ and a set of integers

b1, . . . , bλ such that

• There is a resolution X̃P → X of the singularity at P whose fiber over P is the chain

made up of the Ei’s

• Ei ⋅Ej = δi,j±1 if i ≠ j, E2
j = −bj < −1,

• n
r = b1 − 1

b2− 1

⋅⋅⋅−
1
bλ

.

This X̃P is called the Hirzebruch-Jung desingularization at P .

Theorem 7.3.4. If p ≠ 2 there is a desingularization of R-schemes X ′ → ZR such that X ′
k

has the form

Γ′1

.........................
Γ′b′

2Γ′0

where Γ′0 is the strict transform of ΓR and for all i > 0, Γ′i ≅ P1
k. This is to say that there is an

equality of divisors on X ′ between X ′
k and 2Γ′0+∑b

′

i=1 Γ′i, Γ′0∩Γ′i = Q′
i ∈ Qi×ZpR, and all intersections

are transverse. Moreover XR ≅ X ′, and since X ′ is a regular scheme, so is X . It follows that X is

a regular Zp model for CD(N,d,m)Qp.

Proof. We construct X ′ by performing the Hirzebruch-Jung desingularization at Q for all Q

in all Qi ×R. By Lemma 7.3.2, n = 2, r = 1 and thus λ = 1 and b1 = 2
1 in Definition 7.3.3.

Therefore X ′
k has the form above [CES03, Theorem 2.4.1].

Recall now that X ′ → ZR, XR → ZR are birational morphisms and so there is a birational

map f ∶ XR ⇢ X ′ making the following diagram commute.
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XR
f //

  

X ′ f−1

//

��

XR

~~
ZR

Since R is Dedekind, f−1 ∣Γ′0 is the identity and f can be extended so that the preimage

of each divisor on either XR or X ′ is again a divisor, we find that f is a morphism and thus

an isomorphism [Liu02, Theorem 8.3.20]. It follows that XR is regular and therefore X is

regular [CES03, Lemma 2.1.1].

Corollary 7.3.5. Theorem 7.0.1 holds.

Proof. By Theorem 7.3.4, the conditions of Lemma 7.2.1 hold.

Remark 7.3.6. It can be easily shown that X is actually the minimal regular Zp model of

CD(N,d,m)Qp if its genus is at least one, because there are no exceptional divisors in that

case. In fact we have shown that for all i > 0, Γi is a −2 curve and thus if the genus of

CD(N,d,m)Qp is at least two then Z is the canonical model.

Remark 7.3.7. In the case that XD
0 (N)/wm ≅ P1

Fp we may deduce this theorem from work

of Sadek [Sad10].

7.4 Wild Singularities

Retaining the notation of Lemma 7.1.3, if p = 2 we still have that Z/Z2
is a normal scheme,

non-regular precisely at the fixed points on the special fiber of wm. Moreover, these singular-

ities are still Z/2Z-quotient singularities. Once more, we may resolve these singularities to

give a regular model of CD(N,d,m). If one tried to run through the arguments of the tame

section, one would find that among other things, the argument for finding a new uniformizer

in Lemma 7.3.2 fails spectacularly.
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In contrast to the case p ≠ 2, these cyclic quotient singularities must be wild, which is

to say that p ∣ #I, whenever I is the inertia group of a fixed point of wm. As such, the

resolution of these singularities is not given by inserting a single reduced component, but

rather a tree of possibly non-reduced components about which we know very little. It is

known that if g > 1, the dual graph of the resolution must contain a node [Lor11, Theorem

5.3], but there is not much control otherwise.

The fact that the case D = 1 and D > 1 are so similar in other respects suggests that at

least one of the components is reduced in the resolution of one of the singular points of Z

[Ozm09, Lemma 5.8]. It is however not clear how to proceed on this without some knowledge

of the higher ramification groups at these singular points.
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Chapter 8

Primes dividing the level

Throughout this chapter we will fixD the discriminant of an indefinite quaternionQ-algebra,

N a squarefree integer coprime to D, a squarefree integer d, an integer m ∣DN , and a prime

p ∣ N unramified in Q(
√
d). Let wm be as in Definition 5.2.2. Let XD

0 (N)/Q be as defined

in Corollary 5.2.14, and let CD(N,d,m)/Q be its twist by Q(
√
d) and wm. The purpose of

this section is to prove the following theorem.

Theorem 8.0.1. Let p ∣ N be unramified in Q(
√
d) and m ∣DN . We have CD(N,d,m)(Qp)

nonempty if and only if the conditions of (a) or (b) hold.

(a) p is split in Q(
√
d) and one of the following conditions holds.

• D = 1 [Lemma 8.2.1]

• p = 2, D = ∏i pi with each pi ≡ 3 mod 4, and N/p = ∏j qj with each qj ≡ 1 mod 4

[Lemma 8.2.3]

• p = 3, D = ∏i pi with each pi ≡ 2 mod 3, and N/p = ∏j qj with each qj ≡ 1 mod 3

[Lemma 8.2.4]
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• The following inequality [Lemma 8.2.5] holds

⌊2√p⌋

∑
s=−⌊2

√
p⌋

s≠0

⎛
⎜
⎝

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

⎞
⎟
⎠
> 0

(b) p is inert in Q(
√
d), and there are prime factorizations Dp = ∏i pi, N/p = ∏j qj such

that one of the following two conditions holds

(i) p ∣m, and one of the following two conditions [Theorem 8.1.2] holds.

• p = 2, m = p or DN , for all i, pi ≡ 3 mod 4, and for all j, qj ≡ 1 mod 4

• p ≡ 3 mod 4, m = p or 2p, for all i, pi /≡ 1 mod 4, and for all j, qj /≡ 3 mod 4

(ii) p ∤m and one of the following nine conditions holds.

• m =D = 1 [Lemma 8.2.1]

• p = 2, m = 1, for all i, pi ≡ 3 mod 4, and for all j, qj ≡ 1 mod 4 [Lemma 8.2.3]

• p = 3, m = 1, for all i, pi ≡ 2 mod 3, and for all j, qj ≡ 1 mod 3 [Lemma 8.2.4]

• p ≡ 3 mod 4, m = DN/2p, pi /≡ 1 mod 4 for all i, and qj /≡ 3 mod 4 for all j

[Lemma 8.2.3]

• p ≡ 2 mod 3, m = DN/3p, pi /≡ 1 mod 3 for all i, and qj /≡ 2 mod 3 for all j

[Lemma 8.2.4]

• m =DN/p, pi /≡ 1 mod 4 for all i, and qj /≡ 3 mod 4 for all j [Lemma 8.2.3]

• m =DN/p, pi /≡ 1 mod 3 for all i, and qj /≡ 2 mod 3 for all j [Lemma 8.2.4]

• mp /≡ 3 mod 4 and (p + 1) − tr(Tpm) > eDp,N/p(−4mp)
w(−4mp) [Lemma 8.2.5]

• mp ≡ 3 mod 4 and (p+ 1) − tr(Tpm) > eDp,N/p(−mp)
w(−mp) + eD,N/p(−4mp)

w(−4mp) [Lemma 8.2.5]

As a special case, we recover the following explicit numerical conditions.

Corollary 8.0.2. Let p be a prime dividing N such that p is unramified in Q(
√
d). Then

CD(N,d,DN)(Qp) is nonempty if and only if
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• p is split in Q(
√
d) and one of the following conditions holds.

– D = 1

– p = 2, D = ∏i pi with each pi ≡ 3 mod 4, and N/p = ∏j qj with each qj ≡ 1 mod 4

– p = 3, D = ∏i pi with each pi ≡ 2 mod 3, and N/p = ∏j qj with each qj ≡ 1 mod 3

– The following inequality holds:

⌊2√p⌋

∑
s=−⌊2

√
p⌋

s≠0

⎛
⎜
⎝

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

⎞
⎟
⎠
> 0

• p is inert in Q(
√
d) with Dp = ∏i pi, N/p = ∏j qj such that one of the following holds.

– p = 2, for all i, pi ≡ 3 mod 4 and for all j, qj ≡ 1 mod 4

– p ≡ 3 mod 4, D = 1 and N = p or 2p

Proof. The only part of this special case which does not immediately follow from the theorem

is why we must have D = 1 if p ≠ 2 is inert in Q(
√
d). If m = DN = p then since p ∣ N we

must have D = 1 and N = p. Suppose now that m = DN = 2p. Recall that since BD is

indefinite, if D > 1 then there are at least two primes which divide D. Therefore if D > 1,

we must have D = 2p in contradiction to our assumption that p ∣ N . It follows that D = 1

and N = 2p.

We also note that we obtain results on rational points of XD
0 (N)/Qp when p ∣ N and

D > 1. These do not seem to appear anywhere in the literature.

Corollary 8.0.3. Let D be the squarefree product of an even number of primes, N a square-

free integer coprime to D, and p ∣ N be a prime. We have XD
0 (N)(Qp) ≠ ∅ if and only if

either
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• D = 1, or

• p = 2, D = ∏i pi with each pi ≡ 3 mod 4, and N/p = ∏j qj with each qj ≡ 1 mod 4 or

• p = 3, D = ∏i pi with each pi ≡ 2 mod 3, and N/p = ∏j qj with each qj ≡ 1 mod 3 or

• The following inequality holds:

⌊2√p⌋

∑
s=−⌊2

√
p⌋

s≠0

⎛
⎜
⎝

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

⎞
⎟
⎠
> 0

To prove Theorem 8.0.1, we will have to make the following definitions.

Definition 8.0.4. Assume that p ∣ N . Let XD
0 (N)/Zp be as in Theorem 5.2.24 and let

π ∶ X →XD
0 (N) be a minimal desingularization, so that XZp is a regular model for XD

0 (N)Qp.

Note that if n ∣ DN then extending the automorphism wn from Definition 5.2.2 to X

makes sense. This is because wn ∶ XD
0 (N) → XD

0 (N) induces a birational morphism X ⇢ X

permuting the components of XFp . Therefore wn on XD
0 (N) induces an isomorphism X → X

[Liu02, Remark 8.3.25].

The model X is equipped with a closed embedding c′ ∶XD
0 (N/p)/Fp → X such that πc′ = c,

the embedding defined in Theorem 5.2.24. Let σ be such that ⟨σ⟩ = AutZp(Zp2).

Definition 8.0.5. Let Z be the étale quotient of XZp2
by the action of wm ○ σ.

Note that if p is inert in Q(
√
d) then Zp[

√
d] ≅ Zp2 and thus the generic fiber of Z is

CD(N,d,m)Qp . Therefore Z is a regular model of CD(N,d,m)Qp if p is inert in Q(
√
d).

We also note that if p is split in Q(
√
d), or if p is inert and m = 1, then CD(N,d,m)Qp ≅

XD
0 (N)Qp . Therefore, if p is split in Q(

√
d), we can consider d′ to be any squarefree integer

such that p is inert in Q(
√
d
′) and Z ′ to be the regular model of CD(N,d′,1)Qp ≅XD

0 (N)Qp .

Therefore, we shall obtain our results when p is split as a corollary to our results when p ∤m.
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We shall organize our results into two sections. In the first, we will consider the case when

p ∣ m. In that case, wm and thus the twisted action of Galois will permute c′(XD
0 (N/p)Fp)

and wpc′(XD
0 (N/p)Fp) on the special fiber. In that case, any Fp-rational point must come

from a fixed superspecial point of length greater than one. In the second, we will consider

the case when p ∤ m and we may have to additionally allow for points on c′(XD
0 (N/p)Fp).

Note also that if Xo denotes the complement of the superspecial points in X, XD
0 (N)oFp =

c′(XD
0 (N/p)oFp)∐wpc′(XD

0 (N/p)oFp).

8.1 The proof when p ∣m is inert

Suppose thatD is the discriminant of an indefiniteQ-quaternion algebra, N,d are square-free

integers with (D,N) = 1, m ∣DN , and p ∣m is inert in Q(
√
d). Fix X and Z as in Definition

8.0.4. If p ∣ m, the action of wm on the regular model X interchanges c′(XD
0 (N/p)Fp) and

wpc′(XD
0 (N)Fp . Therefore if P denotes an element of Z(Fp) then π(P (Spec(Fp)) must lie on

both copies of XD
0 (N/p)Fp . This is to say that the base change to Fp of πP is a superspecial

point, say x.

Moreover, we have the following.

Lemma 8.1.1. If D,N,d,m, p are as described in the beginning of this chapter and p ∣m is

inert in Q(
√
d), then CD(N,d,m)(Qp) ≠ ∅ if and only if there is a superspecial wm/p-fixed

point x ∈XD
0 (N)(Fp) of even length.

Proof. By abuse of notation, let Frobp = φ∗1 ∶ Spec(Fp) → Spec(Fp) where φ1 ∶ Fp → Fp. Note

that under the bijection from Z(Fp) to X(Fp), the action P ↦ P Frobp on Z(Fp) translates

to the action of P ↦ wmP Frobp on X(Fp).

Suppose that CD(N,d,m)(Qp) is nonempty. Then by Hensel’s Lemma [JL85, Lemma

1.1] there must be an element of Zsm(Fp), or rather a smooth point such that P = wmP Frobp

in X(Fp). Since p ∣ m, wm interchanges c(XD
0 (N/p)Fp) with wpc(XD

0 (N/p)Fp). A smooth
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fixed point P of wm ○ Frobp must therefore satisfy π(P ) = x ∈ XD
0 (N)(Fp) with x lying in

c(XD
0 (N/p))(Fp) and wpc(XD

0 (N/p))(Fp). That is, x is a superspecial point.

Suppose there is such a smooth fixed point P . Let ` = `(x), so that if ` = 1 then

π∗x(Spec(Fp)) = P and thus P is a singular point. Of course this is a contradiction. If ` > 1

then π∗x(Spec(Fp)) = ⋃`−1
i=1 Ci with Ci ≅ P1

Fp
and if i < j,

Ci ⋅Cj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 j = i + 1,1 ≤ i < `

0 else

.

By Lemma 5.3.17 xFrobp = wp(x), so we have wm ○Frobp(x) = wmp(x) = wm/p(x). Therefore

by continuity, wm/p fixes each Ci and for each i, wpCi = C`−i. If ` is odd, there are no fixed

components so P (Spec(Fp)) must be the unique intersection point of C `−1
2

with C `+1
2
, and

thus singular. Therefore, unless ` is even we arrive at a contradiction.

Conversely suppose that there is a superspecial point x such that ` = `(x) is even and

wm/p(x) = x. Then we have C1, . . .C`−1 fixed by wm/p as above and wp fixes C`/2, so C`/2 is

defined over Fp. Let P1 = C`/2−1∩C`/2 and P2 = C`/2∩C`/2+1 be the singular points of XFp lying

on C`/2, and note that wpP1 = P2. Therefore the fixed points of Frobpwm are nonsingular.

There is a smooth fixed point P of wm ○ Frobp on C`/2 and therefore by Hensel’s Lemma,

CD(N,d,m)(Qp) ≠ ∅.

Theorem 8.1.2. Suppose that D,N,d,m and p are as in Theorem 8.0.1 and p ∣ m is inert

in Q(
√
d). Then CD(N,d,m)(Qp) ≠ ∅ if and only if

• p = 2, m = p or DN , for all q ∣D, q ≡ 3 mod 4, and for all q ∣ (N/2), q ≡ 1 mod 4, or

• p ≡ 3 mod 4, m = p or 2p, for all q ∣D either q = 2 or q ≡ 3 mod 4, and for all q ∣ (N/p),

q = 2 or q ≡ 1 mod 4.
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Proof. By Lemma 8.1.1, CD(N,d,m)(Qp) is nonempty if and only if there is a superspecial

wm/p-fixed point of even length in XD
0 (N)(Fp). By Lemma 5.2.25, the QM endomorphism

ring of a superspecial point on XD
0 (N)(Fp) has discriminant D′ = Dp and level N ′ = N/p.

Note that D′N ′ = DN . By Lemma 5.3.20, there is a superspecial wm/p-fixed point of even

length if and only if

• m/p = 1,2,DN/2 or DN and

• for all q ∣Dp, q = 2 or q ≡ 3 mod 4 and

• for all q ∣ (N/p), q = 2 or q ≡ 1 mod 4.

We shall begin our analysis by applying the top condition first and using the latter two

conditions later. We may immediately see that (m/p) ∣ (DN/p) < DN so m/p ≠ DN . If

m/p = 1 then m = p and either p = 2, or p ≡ 3 mod 4 by the second condition. If p = 2,

2 ∣ (DN/2) so the second and third conditions say that for all q ∣D, q ≡ 3 mod 4, and for all

q ∣ (N/2), q ≡ 1 mod 4.

If m/p = 2 then m = 2p and we conclude that p ≡ 3 mod 4 by the second condition. If

m/p =DN/2 then DNp/2 =m ∣DN and we conclude that p = 2.

8.2 The proof when p ∤m is split or inert

We begin with the following observation regarding cusps, which are points that can only

exist on XD
0 (N)S or CD(N,d,m)S if D = 1.

Lemma 8.2.1. If N is square-free and m ∣ N , then wm fixes a cusp of X1
0(N) if and only if

m = 1. Therefore if N,d are square-free and p ∣ N is a prime, then C1(N,d,m)(Qp) contains

a cusp if and only if either p is split in Q(
√
d) or m = 1.
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Proof. This is proved as part of a stronger theorem of Ogg [Ogg74, Proposition 3] which

shows that even ifN is not square-free, the only possible Atkin-Lehner involution onX1
0(N)Q

which leaves a cusp fixed is w4. If N is square-free, all cusps are Q-rational [Ogg83, p.290]

and the result follows.

Lemma 8.2.2. Let D,N,d,m, p be as in Theorem 8.0.1 and suppose p ∤m is unramified in

Q(
√
d). Suppose that CD(N,d,m)(Qp) does not contain a cusp. Then CD(N,d,m)(Qp) ≠ ∅

if and only if one of the following occurs.

• There is a superspecial wmp-fixed point of even length on XD
0 (N)(Fp).

• There is a superspecial wmp-fixed point of length divisible by three on XD
0 (N)(Fp).

• There is a non-superspecial point of CD(N/p, d,m)(Fp).

Proof. Recall that the possible lengths of a superspecial point x are 1,2,3,6 or 12 [Vig80,

pp.146-147], so that if `(x) is neither even nor divisible by three then `(x) = 1. Let Frobp ∶

Spec(Fp) → Spec(Fp) be induced by the p-th power map. Recall also the regular models

X ,Z of Definition 8.0.4, and that there is a bijection from Z(Fp) to X(Fp) and under

this bijection, the action P ↦ P Frobp on Z(Fp) translates to the action P ↦ wmP Frobp

on X(Fp). Moreover by Lemma 5.3.17, the action of Frobp on the superspecial points of

XFp is the action of wp. Therefore a superspecial Fp-rational point of Z corresponds to a

superspecial wmp-fixed point of XD
0 (N)Fp .

Suppose now that CD(N,d,m)(Qp) is nonempty, or equivalently by Hensel’s Lemma

[JL85, Lemma 1.1] that Zsm(Fp) is nonempty. Suppose further that there are no superspecial

wmp-fixed points of length divisible by 2 or 3. It follows that if P is a smooth fixed point

of wmp in X(Fp), then π(P ) = x is not superspecial. If x were superspecial then its length

would be one. It follows that π−1x = P is not a smooth point. Finally, recall that the non-

superspecial points of X(Fp) lie on exactly one of c′(XD
0 (N)(Fp)) or wpc′(XD

0 (N)(Fp)). If

P is wmP Frobp and lies in XD
0 (N/p)(Fp) then P ∈ Z(Fp).
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Conversely, suppose first that there is an Fp-rational point of Z which is not superspecial.

By the embedding c ∶XD
0 (N/p)Fp →XD

0 (N)Fp , there is a non-superspecial Fp-rational point

of Z. Since XD
0 (N)Fp is smooth away from superspecial points, this Fp-rational point lifts

via Hensel’s lemma to an element of CD(N,d,m)(Qp).

Now suppose there is a superspecial wmp-fixed point x with ` = `(x) > 1. It follows that

π∗(x(Spec(Fp))) = ⋃`−1
i=1 Ci with Ci ≅ P1

Fp
and at most two singular points in XFp on each Ci.

Since wmxFrobp = wmp(x) = x, for all i, wmCi = wmpCi = Ci by continuity of π. Therefore

Ci defines an Fp-rational component of ZFp with at most two singular points. Therefore

Zsm(Fp) is nonempty and by Hensel’s Lemma, Z(Qp) is nonempty.

We now obtain conditions for each of these to occur.

Lemma 8.2.3. There is a superspecial wmp-fixed point of even length on XD
0 (N)Fp if and

only if one of the following occurs.

1. p = 2, m = 1, q ≡ 3 mod 4 for all primes q ∣D, and q ≡ 1 mod 4 for all primes q ∣ (N/2).

2. p ≡ 3 mod 4, 2 ∣ DN/p, m = DN/2p, q /≡ 1 mod 4 for all primes q ∣ D, and q /≡ 3 mod 4

for all primes q ∣ (N/p).

3. m = DN/p, p /≡ 1 mod 4, q /≡ 1 mod 4 for all primes q ∣ D, and q /≡ 3 mod 4 for all

primes q ∣ (N/p).

Proof. By Lemma 5.2.25, if (A, ι) corresponds to a superspecial point x ∈ XD
0 (N)(Fp) then

Endι(O)(A) has discriminant D′ = Dp and level N ′ = N/p. Note that D′N ′ = DN . By

Lemma 5.3.20, there is a superspecial wmp-fixed point of even length if and only if all of the

following occur:

• mp = 1,2,DN/2 or DN ,

• for all primes q ∣Dp, q = 2 or q ≡ 3 mod 4,
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• for all primes q ∣ (N/p), q = 2 or q ≡ 1 mod 4.

The proof will be complete once we have individually exhausted each option from con-

dition one and applied conditions two and three to those options. Since p ∣ mp, mp ≠ 1. If

mp = 2 then p = 2, so 2 ∤ (DN/p), and m = 1. If mp = DN/2 then p ∣ (DN/2) and thus

p ≠ 2 because DN is square-free. It follows from the second condition that m = DN/(2p)

with p ≡ 3 mod 4. The only remaining case is mp = DN , and the second condition tells us

that p = 2 or p ≡ 3 mod 4.

Lemma 8.2.4. There is a superspecial point of length divisible by three in XD
0 (N)(Fp) fixed

by wmp if and only if one of the following occurs.

• p = 3, m = 1, q ≡ 2 mod 3 for all primes q ∣D, and q ≡ 1 mod 3 for all primes q ∣ (N/3).

• p ≡ 2 mod 3, 3 ∣ DN/p, m = DN/3p, q /≡ 1 mod 3 for all primes q ∣ D, and q /≡ 2 mod 3

for all primes q ∣ (N/p).

• m = DN/p, p /≡ 1 mod 3, q /≡ 1 mod 3 for all primes q ∣ D, and q /≡ 2 mod 3 for all

primes q ∣ (N/p).

Proof. By Lemma 5.2.25, if (A, ι) is a superspecial surface corresponding to a point x ∈

XD
0 (N)(Fp) then Endι(O)(A) has discriminant D′ = Dp and level N ′ = N/p. Note that

D′N ′ = DN . By Lemma 5.3.19, there is a superspecial wmp-fixed point of length divisible

by three if and only if all of the following occur:

• mp = 1,3,DN/3 or DN ,

• for all primes q ∣Dp, q = 3 or q ≡ 2 mod 3,

• for all primes q ∣ (N/p), q = 3 or q ≡ 1 mod 3.
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The proof will be complete once we have individually exhausted each option from con-

dition one and applied conditions two and three to those options. Since p ∣ mp, mp ≠ 1. If

mp = 3 then p = 3, so 3 ∤ (DN/p), and m = 1. If mp = DN/3 then p ∣ (DN/3) and thus

p ≠ 3 because DN is square-free. It follows from the second condition that m = DN/(3p)

with p ≡ 2 mod 3. The only remaining case is mp = DN , and the second condition tells us

that p = 3 or p ≡ 2 mod 3.

Lemma 8.2.5. There is a non-superspecial Fp-rational point of Z if and only if one of the

following holds. Here Tmp ∶= wmTp is as in Definition 6.1.1, and acts on H0(XD
0 (N)Fp ,Ω).

• mp = 2 and (p + 1) − tr(Tmp) >
eDp,N/p(−4)

w(−4) + eDp,N/p(−8)
w(−8)

• mp ≠ 2, mp /≡ 3 mod 4 and (p + 1) − tr(Tmp) >
eDp,N/p(−4mp)

w(−4mp)

• mp ≡ 3 mod 4 and (p + 1) − tr(Tmp) >
eDp,N/p(−mp)

w(−mp) + eDp,N/p(−4mp)
w(−4mp)

Proof. Let Y/Zp denote the smooth model of CD(N/p, d,m). By Theorem 6.2.6, #Y(Fp) =

(p + 1) − tr(Tpm). By Lemma 5.3.17, wp acts as Frobp on the superspecial points, so there

is a superspecial point in Y(Fp) if and only if there is a superspecial point fixed by wmp

in XD
0 (N)(Fp). By Corollary 5.3.16, there is a superspecial point x in XD

0 (N/p)(Fp) fixed

by wmp if and only if Z[√−mp] (or Z[ζ4] if mp = 2) embeds into Endι(O)(A) where (A, ι)

corresponds to x.

We now count the number nmp of wmp-fixed superspecial points. Suppose that O′ is

an Eichler order O′ of level N/p in BDp, ℘m is the unique two-sided ideal of norm mp

in O′, and M1, . . . ,Mh are right ideals of O′ which form a complete set of representatives

of Pic(D/p,Np). Under Lemma 5.2.25, nmp is the number of indices i such that Mi ≅

Mi ⊗ ℘m. Thus [Vig80, p.152], the number of such superspecial fixed points is the number

of embeddings of Z[√−mp] (or Z[ζ4] if mp = 2) into any left order of an Mi. If mp =

2 the number of these is eDp,N/p(−4)
w(−4) + eDp,N/p(−8)

w(−8) . If mp ≠ 2 and mp /≡ 3 mod 4 then the
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number of these is eDp,N/p(−4mp)
w(−4mp) . If mp ≡ 3 mod 4 then the number of these is eDp,N/p(−mp)

w(−mp) +
eDp,N/p(−4mp)

w(−4mp) .

We note here that if mp = 2 and eDp,N/p(−4) ≠ 0 then p = 2, m = 1, for all primes q ∣ D,

q ≡ 3 mod 4 and for all primes q ∣ (N/p), q ≡ 1 mod 4. Therefore by Lemma 8.2.3, there is a

superspecial fixed point of even length which gives rise to an element of CD(N,d,m)(Qp).

Therefore, from the perspective of giving equivalent conditions for the presence of local

points, if mp = 2, we may assume that eDp,N/p(−4) = 0 and our condition becomes (p + 1) −

tr(Tmp) >
eDp,N/p(−8)

w(−8) . This is to say, (p + 1) − tr(Tmp) >
eDp,N/p(−4mp)

w(−4mp) , precisely the condition

for all other m,p such that mp /≡ 3 mod 4.

Theorem 8.2.6. Let D be the discriminant of an indefinite Q-quaternion algebra, N a

square-free integer coprime to D and p ∣ N . Then XD
0 (N)(Qp) is nonempty if and only if

one of the following occurs.

1. D = 1.

2. p = 2, for all q ∣D, q ≡ 3 mod 4, and for all q ∣ (N/2), q ≡ 1 mod 4.

3. p = 3, m = 1, for all q ∣D, q ≡ 2 mod 3, and for all q ∣ (N/3), q ≡ 1 mod 3.

4. The following inequality holds

⌊2√p⌋

∑
s=−⌊2

√
p⌋

s≠0

⎛
⎜
⎝

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

⎞
⎟
⎠
> 0.

Proof. First we note that if D = 1, then there is a Q-rational cusp by Lemma 8.2.1. Set

m = 1 and assume D ≠ 1. By Lemma 8.2.2, XD
0 (N)(Qp) is non-empty if and only if one of

the following occurs.

• There is a superspecial wp-fixed point of even length in XD
0 (N)(Fp).
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• There is a superspecial wp-fixed point of length divisible by three in XD
0 (N)(Fp).

• There is a non-superspecial Fp-rational point.

By Lemma 8.2.3, there is a wp fixed point of even length if and only if one of the following

occurs.

• p = 2, for all q ∣D, q ≡ 3 mod 4 and for all q ∣ (N/2), q ≡ 1 mod 4

• p ≡ 3 mod 4 and DN = 2p

• DN = p and p = 2 or p ≡ 3 mod 4

However, if either of the latter two occurs, D = 1 in contradiction to our assumption.

By Lemma 8.2.4, there is a wp fixed point of length divisible by three if and only if one

of the following occurs.

• p = 3, for all q ∣D, q ≡ 2 mod 3 and for all q ∣ (N/3), q ≡ 1 mod 3

• p ≡ 2 mod 3 and DN = 3p

• DN = p and p = 3 or p ≡ 2 mod 3

Once again, if either of the latter two occurs, D = 1. Suppose now that in addition to

D ≠ 1, there are no superspecial points of length two, so the number of non-superspecial

Fp-rational points on XD
0 (N/p) can be written as

(p + 1) − tr(Tp) − ∑
f ∣f(−4p)

eDp,N/p (−4p
f2 )

w (−4p
f2 )

.

Recall now Theorem 6.1.6, the Eichler-Selberg trace formula on H0(XD
0 (N/p)Fp ,Ω):

tr(Tp) = (p + 1) −
⌊2√p⌋

∑
s=−⌊2√p⌋

⎛
⎜
⎝

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

⎞
⎟
⎠
.
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Therefore, there is a non-superspecial Fp-rational point of XD
0 (N/p) if and only if the

following quantity is nonzero.

(p + 1) −
⎛
⎜
⎝
(p + 1) −

⌊2√p⌋

∑
s=−⌊2√p⌋

⎛
⎜
⎝

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

⎞
⎟
⎠

⎞
⎟
⎠
− ∑
f ∣f(−4p)

eDp,N/p (−4p
f2 )

w (−4p
f2 )

=
⎛
⎜⎜
⎝

⌊2√p⌋

∑
s=−⌊2

√
p⌋

s≠0

⎛
⎜
⎝

∑
f ∣f(s2−4p)

eD,N/p ( s
2−4p
f2 )

w ( s2−4p
f2 )

⎞
⎟
⎠

⎞
⎟⎟
⎠
+ ∑
f ∣f(−4p)

eD,N/p (−4p
f2 ) − eDp,N/p (−4p

f2 )

w (−4p
f2 )

Now recall that eD,N(∆) = h(∆)∏p∣D (1 − {∆
p })∏q∣N (1 + {∆

p }) and f(∆) is the conduc-

tor of R∆. Therefore eDp,N/p(∆) = (1 − {∆
p }) eD,N/p(∆) and thus eD,N/p(∆) − eDp,N/p(∆) =

{∆
p } eD,N/p(∆). However, consider that f(−4p) = 1 or 2, depending on p mod 4. Moreover,

if p = 2 then f(−8) = 1. Therefore, since p ∣ −4p
f2 for all f ∣ f(−4p), {

−4p

f2

p } = 0.

We now find, for infinitely many pairs of integers D and N , infinitely many nontrivial

twists of XD
0 (N) which have points everywhere locally.

Example 8.2.7. Let q be a prime which is 3 mod 4 and consider the curve X1
0(q). We will

show that if p ≡ 1 mod 4 is a prime such that ( qp) = −1 then C1(q, p, q)(Qv) is nonempty for

all places v of Q. Since p > 0, C1(q, p, q) ≅R X1
0(q) and thus C1(q, p, q)(R) ≠ ∅. We note

that since p ≡ 1 mod 4, Q(√p) is ramified precisely at p. Therefore if ` ∤ pq is a prime,

then ` is unramified in Q(√p). If ` splits in Q(√p), then C1(q, p, q) ≅Q`
X1

0(q) and thus

C1(q, p, q)(Q`) ≠ ∅. If ` is inert in Q(√p), then C1(q, p, q)(Q`) ≠ ∅ by Corollary 6.3.2.

Since p ≡ 1 mod 4, (pq) = ( qp) = −1, q is inert in Q(√p). Therefore by Theorem

8.0.1(b), C1(q, p, q)(Qq) is nonempty. Moreover, (−qp ) = ( qp) = −1 and so by Theorem 7.0.1,

C1(q, p, q)(Qp) ≠ ∅.
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Chapter 9

Primes dividing the quaternionic

discriminant

Throughout this chapter we will fixD the discriminant of an indefinite quaternionQ-algebra,

N a squarefree integer coprime to D, a squarefree integer d, an integer m ∣DN and a prime

p ∣ D unramified in Q(
√
d). Let wm be as in Definition 5.2.2. Let XD

0 (N)/Q be as defined

in Corollary 5.2.14, and let CD(N,d,m)/Q be its twist by Q(
√
d) and wm. The purpose of

this section is to prove the following theorem.

Theorem 9.0.1. Suppose that p ∣ D is unramified in Q(
√
d) and m ∣ DN . Let pi, qj be

primes such that D/p = ∏i pi and N = ∏j qj.

• Suppose p is split in Q(
√
d). Then CD(N,d,m)(Qp) is nonempty if and only if one

of the following two cases occurs [Theorem 9.2.2].

1. p = 2, pi ≡ 3 mod 4 for all i, and qj ≡ 1 mod 4 for all j

2. p ≡ 1 mod 4, D = 2p, and N = 1

• Suppose that p is inert in Q(
√
d).
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– If p ∣ m, CD(N,d,m)(Qp) is nonempty if and only if one of the following four

cases occurs.

1. m = p, pi /≡ 1 mod 3 for all i, and qj /≡ 2 mod 3 for all j [Lemma 9.1.3]

2. m = 2p and one of eD/p,N(−4) or eD/p,N(−8) is nonzero [Lemma 9.1.4]

3. m/p /≡ 3 mod 4 and eD/p,N(−4m/p) is nonzero [Lemma 9.1.4]

4. m/p ≡ 3 mod 4 and one of eD/p,N(−4m/p) or eD/p,N(−m/p) is nonzero [Lemma

9.1.4]

– If p ∤ m, CD(N,d,m)(Qp) is nonempty if and only if one of the following four

cases occurs [Theorem 9.2.2].

1. p = 2, m = 1, pi ≡ 3 mod 4 for all i, and qj ≡ 1 mod 4 for all j

2. p ≡ 1 mod 4, m =DN/(2p), for all i, pi /≡ 1 mod 4, and for all j, qj /≡ 3 mod 4

3. p = 2, m =DN/2, pi ≡ 3 mod 4 for all i, and qj ≡ 1 mod 4 for all i

4. p ≡ 1 mod 4, m =DN/p, for all i, pi /≡ 1 mod 4, and for all j, qj /≡ 3 mod 4

As opposed to the case where p ∣ N , all conditions here are determined by congruences.

For completeness, we record the following.

Corollary 9.0.2. Let pi, qj be primes such that D/p = ∏i pi and N = ∏j qj.

• If p is split in Q(
√
d), then CD(N,d,DN) ≅ XD

0 (N) over Qp and XD
0 (N)(Qp) is

nonempty if and only if one of the following two cases occurs.

1. p = 2, pi ≡ 3 mod 4 for all i, and qj ≡ 1 mod 4 for all j

2. p ≡ 1 mod 4, D = 2p, and N = 1

• If p is inert in Q(
√
d) then CD(N,d,DN)(Qp) is nonempty.

Proof. Note that eD/p,N(−4DN/p) is always nonzero by Theorem 4.1.28.

105



To prove Theorem 9.0.1, we shall need to work with regular models for XD
0 (N)Qp and

CD(N,d,m)Qp .

Definition 9.0.3. Let π ∶ X →XD
0 (N)/Zp denote a minimal desingularization.

For n ∣DN , let wn denote the automorphism of Definition 5.2.2. Note that extending the

automorphism wn from Definition 5.2.2 to X makes sense because wn ∶ XD
0 (N) → XD

0 (N)

induces a birational morphism X ⇢ X permuting the components of XFp . Therefore wn on

XD
0 (N) induces an isomorphism X → X [Liu02, Remark 8.3.25].

We note also that the components of XD
0 (N)Fp are in W -equivariant bijection with

Pic(D/p,N)∐Pic(D/p,N) by Theorem 5.2.22. The intersection points, which can only link

a component in one copy of Pic(D/p,N) to a component in the other copy of Pic(D/p,N)

are in W -equivariant bijection with Pic(D/p,Np) as in Theorem 5.2.22.

The bijection of the two sets of components with two copies of Pic(D/p,N) is W /⟨wp⟩-

equivariant. As explained in Lemma 5.2.25, wp interchanges the two copies of Pic(D/p,N)

. The length ` of an intersection point x ∈ XD
0 (N)(Fp) is given as in Definition 5.2.20.

Therefore if ` > 1, π∗(x(Spec(Fp))) = ⋃`−1
i=1 Ci with exactly two points of Ci singular in XFp

and for all i, Ci ≅ P1
Fp

[Ogg85, p.202]. We define the length of a component of XD
0 (N)Fp by

the length of the associated element of Pic(D/p,N) as in Definition 5.2.20.

Definition 9.0.4. Let σ be such that ⟨σ⟩ = AutZp(Zp2). We denote by Z/Zp the regular model

of CD(N,d,m)Qp obtained as the étale quotient Z of XZp2
by the action of wm ○ σ.

Note that if p is inert in Q(
√
d) then Zp[

√
d] ≅ Zp2 and thus the generic fiber of Z is

CD(N,d,m)Qp . Therefore Z is a regular model of CD(N,d,m)Qp if p is inert in Q(
√
d).

We also note that if p is split in Q(
√
d), or if p is inert and m = 1, then CD(N,d,m)Qp ≅

XD
0 (N)Qp . Therefore, if p is split in Q(

√
d), we can consider d′ to be any squarefree integer

such that p is inert in Q(
√
d
′) and Z ′ to be the regular model of CD(N,d′,1)Qp ≅XD

0 (N)Qp .

Therefore, we shall obtain our results when p is split as a corollary to our results when p ∤m.
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If m = p, there is a morphism π′ from Z to the curve M(D,N)/Zp of Theorem 5.2.22,

given by possibly blowing down components. We shall begin by discussing this case and

more generally the case when p ∣ m. As with the case p ∣ N , we shall obtain results on

XD
0 (N)(Qp) as a corollary to the case when p ∤m. In doing so, we recover Corollary 9.2.3,

giving a new proof a theorem of Jordan-Livné on XD
0 (1)(Qp)[JL85, Theorem 5.6] and its

extension by Ogg [Ogg85, Theorème,§1].

9.1 The proof when p ∣m

We begin with an elementary lemma on quadratic twists of P1
Fp
.

Lemma 9.1.1. Let w ∶ P1
Fp → P1

Fp be an Fp-rational involution. Let φ1 ∶ Fp → Fp denote the

p-th power map. Then the set of points P ∶ Spec(Fp) → P1 such that wPφ∗1 = P contains at

most two points such that Pφ∗1 = P .

Proof. The set of points P such that P = wPφ∗1 = wP has cardinality at most two because

w2 is the identity but w is a nonidentity automorphism of P1.

This lemma can be restated as follows. LetM(D,N) denote the Mumford curve of Theorem

5.2.22. Let w be an Fp-rational involution which sends a component C ≅ P1
Fp of (M(D,N))Fp

to itself. Let T be the twist of C by w and Fp2 . Then at most two points of C(Fp) lie in

T (Fp). We can now state the following.

Lemma 9.1.2. Let p ∣ D be unramified in Q(
√
d) and p ∣ m. Then CD(N,d,m)(Qp) is

nonempty if and only if one of the following occurs.

(1) p =m and there is some component of XD
0 (N)Fp with length greater than one

(2) p ≠m and there is a component of XD
0 (N)Fp fixed by wm/p
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Proof. Let Frobp = φ∗1 where φ1 ∶ Fp → Fp is the p-th power map. Fix a bijection from Z(Fp) to

X(Fp) under which the action of P ↦ P Frobp is translated to the action of P ↦ wmP Frobp.

By Lemma 5.2.25, the action of Frobp on the components and intersection points of ZFp is

given by wmwp = wm/p. Therefore a component or intersection point of ZFp is defined over

Fp if and only if that component or intersection point is wm/p-fixed.

If p =m this is the obvious extension of a result of Rotger-Skorobogatov-Yafaev [RSY05,

Proposition 3.4]. Since m/p = 1 and w1 is the identity, all components and intersection points

are Fp-rational. This sounds great except that there are generically p + 1 Fp-rational inter-

section points on each component. Namely, let y be a component and {xi} the intersection

points on that component, so that `(xi) ∣ `(y) for all i and [KR08, 3.6]

∑
i

1

`(xi)
= p + 1

`(y) .

It follows that if `(y) = 1 then there are precisely p + 1 intersection points xi, and thus

no smooth Fp-rational points on y. Therefore if `(y) = 1 for all components of ZFp , Zsm(Fp)

is empty and thus by Hensel’s Lemma, CD(N,d,m)(Qp) is empty.

On the other hand suppose that `(y) > 1. If `(xi) = 1 for all i, then

p + 1 > p + 1

`(y) = ∑
i

1

`(xi)
= #{xi}.

Clearly then, there are p + 1 −#{xi} smooth Fp-rational points on y which lift to points of

CD(N,d,m)(Qp) by Hensel’s Lemma.

Suppose there exists some x which maps Spec(Fp) to y ⊂ XD
0 (N)Fp and `(x) > 1. Then

π∗(x(Spec(Fp))) = ⋃`(x)−1
j=1 Cj with Cj ≅ P1

Fp
for all j. In XFp , wpCj = C`(x)−j by continuity so

wm/pCj = Cj. It follows that Cj defines an Fp-rational component of ZFp containing at most

two singular points of ZFp . Therefore, there is a smooth point of Z(Fp) coming from Cj.

Now suppose that p ∣m but p ≠m and recall the curve M/Zp of Theorem 5.2.22. Let π′ ∶
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N →M be a minimal desingularization, so that NFp is the twist of ZFp by Fp2 and wm/p. Since

m ≠ p, wm/p is not the identity. We may apply Lemma 9.1.1 to say that CD(N,d,m)(Qp) is

nonempty if a component of N is fixed by wm/p. Suppose that a component of NFp is fixed

by wm/p (under the isomorphism NFp ≅ ZFp ≅ XFp). Therefore there is a component y of

ZFp which is Fp-rational. Since all intersection points are rational, y contains the image of a

smooth Fp rational point. This is because at most 2 singular intersection points stayed Fp-

rational. Since there is a smooth point of Z(Fp), CD(N,d,m)(Qp) is nonempty by Hensel’s

Lemma. Finally we note that if a component C of XFp is fixed by wm/p then so is its image

π(C). If π(C) is a component of XD
0 (N)Fp , we are done. If π(C) is an intersection point

of two components C1,C2 of XD
0 (N)Fp then wm/p either fixes both of them or interchanges

them. However, Theorem 5.2.22 tells us that under the bijection between components of

XD
0 (N)Fp and Pic(D/p,N)∐Pic(D/p,N), C1 must lie in one copy and C2 in the other.

Since these bijections are W /⟨wp⟩-equivariant, wm/p cannot interchange C1 and C2 and must

therefore fix them.

Lemma 9.1.3. If p =m and p is inert in Q(
√
d), then CD(N,d,m)(Qp) ≠ ∅ if and only if

one of the following occurs.

(1) For all primes q ∣ (D/p), either q = 2 or q ≡ 3 mod 4, and for all primes q ∣ N , either

q = 2 or q ≡ 1 mod 4.

(2) For all primes q ∣ (D/p), either q = 3 or q ≡ 2 mod 3, and for all primes q ∣ N , either

q = 3 or q ≡ 1 mod 3.

Proof. By Theorem 4.1.28, condition (1) is equivalent to eD/p,N(−4) ≠ 0 and condition (2)

is equivalent to eD/p,N(−3) ≠ 0. Recall that the possible lengths of a component are 12

if (D/p,N) = (2,1), 6 if (D/p,N) = (3,1), and 1,2 or 3 otherwise [Vig80, Proposition
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V.3.1]. Therefore a component corresponding to [I] has length divisible by 2 if and only

if Z[ζ4] ↪ Ol(I) and has length divisible by 3 if and only if Z[ζ6] ↪ Ol(I). Therefore

eD/p,N(−4) ≠ 0 if and only if there is a component of XD
0 (N)Fp of length divisible by two

and eD/p,N(−3) ≠ 0 if and only if there is a component of XD
0 (N)Fp of length divisible by

three. This is to say that one of the two conditions of the Lemma occurs if and only if there

is a component y of XD
0 (N)Fp such that `(y) > 1. But then by Lemma 9.1.2 there is such a

component if and only if CD(N,d,m)(Qp) is nonempty.

Lemma 9.1.4. If p ∣m and p ≠m, then CD(N,d,m)(Qp) is nonempty if and only if one of

the following occurs.

• m = 2p and one of eD/p,N(−4), eD/p,N(−8) is nonzero.

• m/p /≡ 3 mod 4 and eD/p,N(−4m/p) is nonzero.

• m/p ≡ 3 mod 4 and one of eD/p,N(−4m/p) or eD/p,N(−m/p) is nonzero.

Proof. Suppose that p ∣ m and p ≠ m. After Lemma 9.1.2, CD(N,d,m)(Qp) is nonempty if

and only if a component ofXD
0 (N)Fp is fixed by wm/p. After Lemma 5.2.25, such a component

corresponds to an element of Pic(D/p,N). After Lemma 5.3.16, such a component is fixed

by wm/p if and only if there is an embedding of Z[
√
−m/p] (or Z[ζ4] if m/p = 2) into the

QM endomorphisms of (A, ι). Such an embedding of an order R exists if and only if there

is an optimal embedding of an order R′ ⊃ R. In this case, the only orders which contain

Z[
√
−m/p] are itself or Z [1+

√
−m/p
2 ] if m/p ≡ 3 mod 4. Respectively, their discriminants are

−4m/p and −m/p, so the result follows from Theorem 4.1.28.

We close by noting that if m/p = 1 then m/p /≡ 3 mod 4. Furthermore, eD/p,N(−4) ≠ 0

if and only if for all q ∣ (D/p), either q = 2 or q ≡ 3 mod 4 and for all q ∣ N , either q = 2

or q ≡ 1 mod 4. Therefore, there is a component of XD
0 (N)Fp of length divisible by two.

Therefore, we absorb that condition of Theorem 9.0.1 into the case that m/p /≡ 3 mod 4.
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9.2 The proof when p ∤m

Once more, we shall use Hensel’s Lemma to determine whether CD(N,d,m)(Qp) is nonempty

in terms of XFp . If p ∤m then the action of Frobp on the components and intersection points

of ZFp ≅ XFp coincides with the action of wmp. However, by Lemma 5.2.25, the action of wmp

on XD
0 (N)Fp fixes no component. In fact, we conclude the following.

Lemma 9.2.1. Suppose that p ∤ m is unramified in Q(
√
d). Then CD(N,d,m)(Qp) is

nonempty if and only if there is a superspecial wmp-fixed intersection point x of even length

in XD
0 (N)Fp.

Proof. If CD(N,d,m)(Qp) is nonempty, then by Hensel’s Lemma there is a smooth point of

Z(Fp). Therefore, there is a smooth point P of X(Fp) fixed by P ↦ wmP Frobp. By Lemma

5.2.25, the action of wmp on XD
0 (N)Fp fixes no component. Therefore, π(P ) = x is the

intersection point of two components. Since P is smooth, π∗(x(Spec(Fp))) ≠ P (Spec(Fp)).

Therefore ` = `(x) > 1 and π∗(x(Spec(Fp))) = ⋃`−1
i=1 Ci with Ci ≅ P1

Fp
. Since wmp(x) = x,

wmpCi = C`−i. Therefore, the only component which could be fixed by wmp is C`/2. If such a

component exists, then ` must be even. Since P (Spec(Fp)) ∈ Ci for some i, there must be a

fixed component and thus ` must be even.

Conversely, if there is a superspecial wmp-fixed intersection point x of even length then

π∗(x(Spec(Fp))) = ⋃`−1
i=1 Ci. Since wmpC`/2 = C`/2, there is a component of ZFp which is defined

over Fp. It follows that there is a smooth point in Z(Fp) and therefore CD(N,d,m)(Qp) is

nonempty.

Theorem 9.2.2. If p ∤m, CD(N,d,m)(Qp) is nonempty if and only if one of the following

occurs.

1. p = 2, m = 1, q ≡ 3 mod 4 for all q ∣ (D/2), and q ≡ 1 mod 4 for all q ∣ N .

2. p ≡ 1 mod 4, m =DN/(2p), q /≡ 1 mod 4 for all q ∣ (D/p), and q /≡ 3 mod 4 for all q ∣ N .
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3. p = 2, m =DN/2, q ≡ 3 mod 4 for all q ∣ (D/2) and q ≡ 1 mod 4 for all q ∣ N .

4. p ≡ 1 mod 4, m =DN/p, , q /≡ 1 mod 4 for all q ∣ (D/p), and q /≡ 3 mod 4 for all q ∣ N .

Proof. By Lemma 9.2.1, CD(N,d,m)(Qp) is nonempty if and only if there is a superspecial

wmp-fixed intersection point of even length. By Corollary 5.3.20, this can occur if and only

if all of the following occur.

• mp = 1,2,DN/2 or DN .

• for all q ∣ (D/p), either q = 2 or q ≡ 3 mod 4

• for all q ∣ Np, either q = 2 or q ≡ 1 mod 4

Since p ∣ mp, mp ≠ 1. If mp = 2 then m = 1 and p = 2. This is the first case of the

Theorem. If mp = DN/2 then p ≠ 2 and since p ∣ Np, we must have p ≡ 1 mod 4. Since

m = DN/(2p) and p ≡ 1 mod 4, this is the second case of the Theorem. If mp = DN then

m =DN/p and either p = 2 or p ≡ 1 mod 4. These are respectively the third and fourth cases

of the Theorem.

Corollary 9.2.3. Let D be the discriminant of an indefinite Q-quaternion algebra, N a

square-free integer coprime to D and p ∣ D. Then XD
0 (N)(Qp) is nonempty if and only if

one of the following occurs.

• p = 2, q ≡ 3 mod 4 for all q ∣ (D/2) and q ≡ 1 mod 4 for all q ∣ N

• p ≡ 1 mod 4, D = 2p and N = 1

Proof. If p = 2 we are at the first case of Theorem 9.2.2. We cannot have p = DN for any p

since p ∣ D and thus D is divisible by at least two primes, so the third and fourth cases of

Theorem 9.2.2 cannot occur. If DN = 2p with p ≡ 1 mod 4 then by the same reasoning we

must at least have (2p) ∣D, but then D = 2p and N = 1.
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Finally we give a family of examples of twists of XD
0 (N) which have points everywhere

locally.

Example 9.2.4. Let q be an odd prime, consider the curve X2q
0 (1) and let g be its genus. Let

p ≡ 3 mod 8 such that (−pq ) = −1 and for all odd primes ` less than 4g2, (−p
`
) = −1. Consider

the twist C2q(1,−p.2q) of X2q
0 (1).

Note that since p ≡ 3 mod 8 and (−pq ) = −1, C2q(1,−p,2q)(Q2) and C2q(1,−p,2q)(Qq)

are both nonempty by Corollary 9.0.2.

Since (−pq ) = −1 and p ≡ 3 mod 4, ( qp) = −1. Since p ≡ 3 mod 8, (−1
p ) = −1 and (2

p) = −1.

Therefore (−2q
p ) = −1 and (−p

2
) = (p

2
) = −1. Since we already had (−pq ) = −1, we may apply

Theorem 7.0.1 to say C2q(1,−p,2q)(Qp) ≠ ∅.

Let ` ∤ 2pq be a prime. If ` > 4g2 then we may apply Theorem 6.0.1 to see that

C2q(1,−p.2q)(Q`) is nonempty. If ` < 4g2 then we may apply Corollary 6.3.2 to see that

C2q(1,−p,2q)(Q`) is nonempty.

Finally, since −p < 0, C2q(1,−p,2q) /≅R X2q
0 (1), the latter of which does not have real

points [Cla03, Theorem 55]. Therefore (X2q
0 (1)/w2q)(R) ≠ ∅ if and only if C2q(1,−p,2q)(R)

is nonempty. But then by Theorem 4.1.28, there is an embedding of Z[
√
−2q] into any

maximal order in B2q and thus X2q
0 (1)/w2q has real points [Ogg83, Theorem 3].
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Chapter 10

A Worked Example: X0(14) twisted by

w14

Let d be a squarefree integer and let C1(14, d,14)/Q denote the twist of X0(14) by w14 and

Q(
√
d). As shorthand, we may refer to this curve as C1(14, d) or even C(14, d).

We note that since the genus of X0(14) is one, the genus of C(14, d) is also one for all d.

This does not necessarily mean that C(14, d) is an elliptic curve, as it may lack Q-rational

points. We shall however study a family of squarefree integers d such that C(14, d) is an

elliptic curve, contingent on a well-known conjecture on ranks of elliptic curves. In fact, we

will show the following.

Theorem 10.0.1. Assuming Conjecture 10.4.1, if p is a prime congruent to one of 17,33

or 41 mod 56 then C(14, p) has infinitely many Q-rational points, and in fact is an elliptic

curve of rank one over Q.

We will also give applications of this theorem to the inverse Galois problem.
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10.1 Local Points

To give points in C(14, d)(Q), we will first establish some basic results on local points. In

fact we will establish basic results for local points on C1(2q, d,2q) for q ≡ 3 mod 4.

Lemma 10.1.1. If D = 1, CD(N,d,N)(R) ≠ ∅.

Proof. If d > 0, then C1(N,d,N) ≅R X0(N) which has cuspidal real points. If d < 0, then

Eichler’s embedding theorem states that
√
−N ↪ O0(N) and so by Ogg’s theorem [Ogg83,

Theorem 3] there are real points on X0(N)/wN and thus on C1(N,d,N).

Lemma 10.1.2. If p ∤ 2q is unramified in Q(
√
d) then C1(2q, d,2q)(Qp) is nonempty.

Proof. Assume that p ∤ 2q is unramified in Q(
√
d), which is to say that p is either split or

inert. If p is split inQ(
√
d) then C1(2q, d,2q) ≅Qp X

1
0(2q) and we know thatX1

0(2q)(Qp) ≠ ∅.

If p is inert in Q(
√
d) then we may apply Corollary 6.3.2 to find C1(2q, d,2q)(Qp) ≠ ∅.

Lemma 10.1.3. If p = 2 is unramified in Q(
√
d), C1(2q, d,2q)(Q2) is nonempty if and only

if (d
2
) = 1.

Proof. If (d
2
) = 1, then by Theorem 8.0.1 (a), C1(2q, d,2q)(Q2) is nonempty. If (d

2
) = −1

then by Theorem 8.0.1 (b)(ii), C1(2q, d,2q)(Q2) is empty since q /≡ 1 mod 4 and in terms of

that theorem, q = N/2.

Lemma 10.1.4. If q is unramified in Q(
√
d), C1(2q, d,2q)(Qq) is nonempty.

Proof. If (d
q
) = 1, then by Theorem 8.0.1 (a), C1(2q, d,2q)(Qq) is nonempty. If (d

q
) = −1

then by Theorem 8.0.1 (b)(ii), C1(2q, d,2q)(Qq) is nonempty since Dq = q ≡ 3 mod 4 and

N/q = 2.

Lemma 10.1.5. If p is ramified in Q(
√
d) and (−2q

p ) = −1 then C1(2q, d,2q)(Qp) ≠ ∅ if and

only if (−pq ) = 1 if and only if (−qp ) = −1.
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Proof. This follows from Theorem 7.0.1.

Theorem 10.1.6. Suppose that d ≡ 1 mod 8 is divisible only by primes p such that (2
p) =

(−pq ) = 1. Then for all places v of Q, C1(2q, d,2q)(Qv) is nonempty. In particular,

C(14, d)(Qv) ≠ ∅ for all places v of Q.

Proof. Recall that d ≡ 1 mod 8 if and only if 2 is unramified in Q(
√
d) and (d

2
) = 1. Since

(d
2
) = 1, C1(2q, d,2q)(Q2) ≠ ∅ by Lemma 10.1.3. Moreover p is ramified in Q(

√
d) if and

only if p ∣ d. For all such p, we have C1(2q, d,2q)(Qp) ≠ ∅ by Lemma 10.1.5. Since q is

unramified in Q(
√
d), C1(2q, d,2q)(Qq) ≠ ∅ by Lemma 10.1.4. By Lemma 10.1.2, if p ∤ 2q is

unramified in Q(
√
d), C1(2q, d,2q)(Qp) ≠ ∅. Finally by Lemma 10.1.1, C1(2q, d,2q)(R) ≠ ∅

and the result follows.

Definition 10.1.7. If p is an odd prime, then p∗ ∶= (−1)(p−1)/2.

Note that Q(√p∗) is ramified precisely at the prime p.

Corollary 10.1.8. Suppose that p is a prime such that (2
p) = 1 and (−7

p ) = −1. Then

C(14, p∗)(Qv) is nonempty for all places v of Q.

Proof. Since (2
p) = 1, p ≡ ±1 mod 8. Therefore p∗ ≡ 1 mod 8 and we may apply Theorem

10.1.6. The result follows.

10.2 Jacobians of Twists

As we have obtained conditions for C(14, p∗) to have points everywhere locally, we would

like to put that information together and discover global points. Note that as C(14, p∗) is

a genus one curve over Q with points everywhere locally, there exists some elliptic curve

E/Q such that C(14, p∗) is an element of X(E,Q). If we can show that X(E,Q) is small

enough, we can show in fact that C(14, p∗) represents the identity element of X(E,Q), or

equivalently that C(14, p∗) ≅ E. We now explicitly determine Ep ∶= Jac(C(14, p∗)).
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Lemma 10.2.1. Let C be the hyperelliptic curve of genus one given by the model

y2 = a4x
4 + a3x

3 + a2x
2 + a1x + a0,

and let Cd denote the twist of C by the hyperelliptic involution, thus given equally by the

model

y2 = da4x
4 + da3x

3 + da2x
2 + da1x + da0,

or

dy2 = a4x
4 + a3x

3 + a2x
2 + a1x + a0.

Then

1. the Jacobian of C is given by the model

y2 = 4x3 − x(a0a4 − 4a1a3 + 3a2
2) − (a0a2a4 + 2a1a2a3 − a0a

2
3 − a4a

2
1 − a3

2)

2. the Jacobian of Cd is given equally by the model

y2 = 4x3 − xd2(a0a4 − 4a1a3 + 3a2
2) − d3(a0a2a4 + 2a1a2a3 − a0a

2
3 − a4a

2
1 − a3

2)

or

dy2 = 4x3 − x(a0a4 − 4a1a3 + 3a2
2) − (a0a2a4 + 2a1a2a3 − a0a

2
3 − a4a

2
1 − a3

2)

In particular the Jacobian of the twist of C by Q(
√
d) and the hyperelliptic involution is

the twist of the Jacobian of C by Q(
√
d) and the elliptic involution.

Proof. Let f(x) = a4x4 + a3x3 + a2x2 + a1x + a0 and define I(f) ∶= a0a4 − 4a1a3 + 3a2
2 and

J(f) ∶= a0a2a4 + 2a1a2a3 − a0a2
3 − a4a2

1 − a3
2. The result of An et al. [AKM+01, §3.2] is that

the Jacobian of the curve over Q given by y2 = f(x) is an elliptic curve over Q. Precisely, it
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is given as y2 = 4x3 − I(f)x − J(f).

Recall now that the curve over Q given by dy2 = f(x) is isomorphic to the curve over Q

given by y2/d = f(x). The isomorphism is given by the change of variables (x, y) ↦ (x, y/d).

Therefore the curve overQ given by dy2 = f(x) is isomorphic to the curve given by y2 = df(x).

Note now that I(f) is a quadratic form in the coefficients of f and J(f) is a cubic form in

the coefficients of f . Therefore I(df) = d2I(f) and J(df) = d3J(f). The change of variables

(x, y) ↦ (x/d, y/d2) gives the change of models in (2).

Gonzalez [GR91] found equations for all hyperelliptic modular curves of genus g > 0, and

moreover determined when the Atkin-Lehner involutions are hyperelliptic. In particular the

hyperelliptic model for (X0(14),w14) is

y2 = x4 − 14x3 + 19x2 − 14x + 1.

We verify that for the hyperelliptic curve (X0(14),w14), (I, J) = (300,8158). Therefore,

for Ep, (I, J) = (300(p∗)2,8158(p∗)3). Recall now that since X0(14) possesses exactly one Q-

rational two torsion point, so does Ep. We collect our results and some convenient Weierstrass

forms for Ep in the following.

Corollary 10.2.2. The elliptic curve Ep can be recognized as the standard quadratic twist

of X0(14) by p∗. In particular we can write down its short Weierstrass model

y2 = x3 + 5805(p∗)2x − 285714(p∗)3

This elliptic curve has exactly one 2-torsion point over Q and when we shift that point

to (0,0) we have the model

y2 = x3 + 117(p∗)x2 + 10368(p∗)2x.
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10.3 Two Descent and Shafarevich-Tate Groups

Now that we’ve acquired local data about C(14, p∗), we need to use some Galois cohomology

to generate some global data. Since it has points everywhere locally, C(14, p∗) corresponds

to a cohomology class ξ which is an element of X(Q,Ep). We can even show that it is an

element of X(Q,Ep)[2] as follows.

In the previous subsection we saw C(14, p∗) as a curve whose Jacobian is actually Ep, so

ξ is not just an element of H1(Q,Aut(X0(14))) =H1(Q,Aut(Ep)) but in fact an element of

H1(Q,Ep). Moreover since C(14, p∗) ≅X0(14) ≅ Ep over Q(√p) any cocycle representing ξ

factors through the quotient Gal(Q/Q) → Gal(Q(√p∗)/Q). Thus the support of any such

cocycle is the support of the induced cocycle Z/2Z → Ep. However, the cocycle condition

mandates that two-torsion elements be taken to two-torsion elements, hence ξ is in the image

of H1(Q,Ep[2]), and thus H1(Q,Ep)[2].

We wish to show that X(Ep,Q)[2] is trivial for each p in our congruence classes. To do

this we recall for any isogeny of elliptic curves φE → E′ the Kummer sequence 0 → E[φ] →

E → E′ → 0 and the induced sequence

0→ E′(Q)
φE(Q) → Selφ(E,Q) →X(E,Q)[φ] → 0

We are of course primarily interested in the case where φ = [2], but we are also interested

in the case where φ is the isogeny given by modding out by a point of order 2. In this

case if we let φ̂ be the dual isogeny, φφ̂ = φ̂φ = [2]. The process of putting these together is

classically known as descent via two-isogeny [Sil92, Remark X.4.7], expressed in the following

exact sequences:
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0

↓
E′[φ̂](Q)

φ(E[2](Q)∩E′[φ̂](Q)

↓

0 → E′(Q)
φE(Q) → Selφ(Q,E) → X(Q,E)[φ] → 0

↓

0 → E(Q)
2E(Q) → Sel2(Q,E) → X(Q,E)[2] → 0

↓

0 → E(Q)
φ̂E′(Q) → Selφ̂(Q,E′) → X(Q,E′)[φ̂] → 0

↓

0

Moreover, elements of Selφ(Q,E) and Selφ̂(Q,E′) are readily described as hyperelliptic

degree 2 covers of E,E′. These correspond to squarefree elements of Q with zero valuation

outside the primes dividing 2∞ and the primes of bad reduction. We will refer to this set of

primes as S and these squarefree elements as Q(S,2).

For an elliptic curve in this particular Weierstrass form, Silverman [Sil92, Proposition

X.4.9] gives a very explicit description of the principal homogeneous spaces in the image of

Q(S,2) ≅H1(Q,E[φ];S).

For d ∈Q(S,2) and E = Ep,

Cd ∶ dw2 = d2 − (2)(32)(13)(p∗)(d)z2 − (34)(p∗)2(73)z4

Here S is the set of archimedean places, places dividing 2 and the primes of bad reduction

for Ep. For this S, the classes of cocycles unramified at S, H1(Q,Ep[φ];S) ⊃ Selφ(Q,E)

where φ is the isogeny with kernel generated by the rational 2-torsion.
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Moreover, we can make the change of variables z ↦ z/3 to get

Cd ∶ dw2 = d2 − (2)(13)(p∗)(d)z2 − (p∗)2(73)z4.

We will now determine which of these Cd have rational points.

Lemma 10.3.1. On a hyperelliptic curve of even degree

y2 = a2nx
2n + a2n−1x

2n−1 + ⋅ ⋅ ⋅ + a1x + a0

there are (two) rational points at infinity if and only if a2n is a rational square.

Proof. A point at infinity is the a point on curve with x = 0 after the change of coordinates

x ↦ 1/x. To have this make sense, we have to make the additional substitution y ↦ xny.

When we do this substitution and set x = 0 we have the equation y2 = a2n

First we work with Selφ(Q,Ep). Recognize that Q(S,2) = ⟨−1,2,7, p⟩. The leading term

of one fd(z) such that w2 = fd(z) determines Cd is −343p2

d . By our lemma, Cd has rational

points at infinity precisely when d = −7, so we have an automatic element of the Selmer

group which maps to zero in X.

We may immediately remove 2 from consideration. Consider the Newton polygon of f2(z)

over Q2 for C2 ∶ w2 = 2 − 26p∗z2 − 343
2 p

2z4. It is a single segment of slope −1/2. Therefore

f2(z) = 0 has no roots in Q2. Therefore C2 has no points with w = 0. If w ≠ 0 multiply the

equation by 2. Taking v2 of both sides of 2w2 = 4 − 52p∗z2 − 343p2z4 yields 1 + 2v2(w) ≥ 0

if v2(z) ≥ 0. If v2(z) > 0 then 1 + 2v2(w) = 2, which can’t happen. If v2(z) = 0 then

1+ 2v2(w) = 0, which also can’t happen. Thus there are no 2-adic points on C2 and thus it’s

not part of the Selmer group. Moreover, these same methods show that if 2 ∣ d then Cd has

no 2-adic points.

121



For d = 7, we can look p-adically and see there are no points when w = 0 by studying

the Newton polygon of f7(z) over Q7 (recall that (7
p) = −1). Then if vp(z) > 0, 2vp(w) = 1,

which can’t happen. Thus we may also remove 7 from consideration.

For d = −1 we use a careful application of Hensel’s Lemma due to Birch and Swinnerton-

Dyer on the solubility of such hyperelliptics in Q2. Note as we apply this that we show along

the way that if p ≡ 1 mod 8, there are no Q2 points for d = −p.

Lemma 10.3.2 (BS-D,Lemma 7). Let (x0, y0) ∈ Z2 be a solution to y2 ≡ P4(x) mod 2n

and let l = v2(P4(x0)) and m = v2(P ′
4(x0)). Then there exists a 2-adic solution (X0, Y0) ≡

(x0, y0) mod 2n if one of the following occurs:

• P4(x0) is a 2-adic square

• n >m and l ≥m + n

• n >m and l =m + n − 1 and l even

• n >m and l =m + n − 2 and l even and P4(x0)
2l

≡ 1 mod 4

If one of the following occurs, n is too small to be conclusive:

• m ≥ n and l ≥ 2n

• m ≥ n and l = 2n − 2 and P4(x0)
2l

≡ 1 mod 4

If none of the above occurs, there are no such 2-adic solutions.

Let n = 2 so we are working mod 4. We have solutions for x0 = 1,3 so P4(x0) ≡ 28 =

(22)(7) mod 32. Thus l = 2 and similarly m = 3, moreover P4(x0)/4 ≡ 7 mod 8 so P4(x0) is

not a 2-adic square. Thus we have shown that if p ≡ 1 mod 8, Selφ(Q,Ep) ↪ {1,−7, p,−7p}.
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We also consider Selφ̂(Q,E′
p). Recall that E′

p is y2 = x3 − 26px2 − 343p2x whose primes

of bad reduction are 2,7 and p so Q(S,2) = ⟨−1,2,7, p⟩. The principal homogeneous spaces

there are of the form

Cd ∶ dw2 = d2 − 26pdz2 + p2 ⋅ 23 ⋅ 67z4

None of these principal homogeneous spaces have points at infinity. If d < 0, there are

no R-points. The same 2-adic Newton polygon argument carries over verbatim for 2 ∣ d

and for d = 7 the same valuation argument carries over. Thus # Selφ̂(Q,E′
p)) ≤ 3 and so

dim2 Selφ̂(Q,E′
p) ≤ 1. Then we note this implies rank(E′

p(Q)) ≤ 1 and dim2 X(Q,E′
p)[φ̂] ≤ 1.

10.4 The L-function and the parity conjecture

It follows from work of previous sections both that rank(Ep(Q)) ≤ 1 and dim2 X(Q,Ep)[φ] ≤

1 since we already know that Ep[φ](Q) ≠ (0). We note now that X0(14) has rank zero and

the sign of the functional equation for its L-function is +1. Therefore [Cla07, Theorem 3],

the sign in the functional equation of L(Ep, s) is −1 precisely when p ≡ 1 mod 4, as is our

case here.

We now make use of the following weaker form of the Birch and Swinnerton-Dyer con-

jecture.

Conjecture 10.4.1 (The Parity Conjecture). The order of vanishing of L(Ep, s) is congru-

ent to the parity of the rank of Ep(Q) modulo two.

Assuming this, we have rank(Ep(Q)) = 1 and X(Q,Ep)[φ] = (0). To get our result,

we need X(Q,Ep)[2] = 0. Moreover since isogenies preserve the rank of an elliptic curve,

E′
p(Q) has rank one and X(Q,E′

p)[φ̂] = (0).

Theorem 10.4.2. Assuming the parity conjecture, X(Q,Ep)[2] = 0 and thus Ep ≅ C(14, p)

for p ≡ 17,33,41 mod 56. Moreover, in that case Ep is an elliptic curve of rank one.
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Proof. If the parity conjecture is true, then Ep has rank one. It follows that X(Q,Ep)[φ] =

X(Q,E′
p)[φ̂] = (0). We may then apply the exact sequence [Sil92, Proposition X.6.2]

0→X(Q,E)[φ] →X(Q,E)[2] →X(Q,E′)[φ]

to obtain that X(Q,Ep)[2] = (0). It follows then, since C(14, p) defines a cocycle in

X(Q,Ep)[2] which is trivial according to whether C(14, p) ≅ Ep or not, that C(14, p) ≅ Ep,

an elliptic curve of rank one.

10.5 An application to the inverse Galois problem

Recall the following theorem of Shih.

Theorem 10.5.1 (K.-y. Shih, 1974). Suppose p is an odd prime such that either (2
p) , (3

p)

or (7
p) = −1. Then there exists a Galois extension L/Q such that Gal(L/Q) = PSL2(Z/pZ).

This was accomplished by studying twists ofX0(N) byQ(√p∗) and wN whereX0(N) has

genus zero. In particular, if N ∈ {2,3,7} then there are rational points on C1(N,p∗,N) when

(Np ) = −1. The latter condition guarantees that a twist of the full p-torsion representation of

the universal elliptic curve over all but finitely many points of X0(N) is regular. Therefore

by Hilbert’s Irreducibility Theorem, this descends down to Q.

In his “Topics in Galois Theory” [Ser08], Serre proposed a complement to Shih’s theorem

where we can relax the condition that C1(N,p∗,N) is P1 to the condition that C1(N,p∗,N)

is a curve with infinitely many rational points. This was used to show that, contingent on

the parity conjecture, N = 11 or 19 can also be used [Cla07].

Note however that for all N ∈ {2,3,7,11,19}, there is already a wN -fixed point in

X0(N)(Q) and these are the only N for which this can occur. The following shows that this

is not an obstacle to generating Galois groups.
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Corollary 10.5.2. Assuming the parity conjecture, if p is a prime congruent to one of 17,33

or 41 mod 56 then PSL2(Z/pZ) is a Galois Group over Q.
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