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Chapter 1

Introduction

Given a,b e Q*, define the quaternion algebra (%b) to be the set of all x + yi + zj + wk with
x,y,z,w € Q such that 2 =a,j2 =b, and ij = —ji = k.

It can be shown that if B is a quaternion algebra, then for all but finitely many primes
p, B®q Q, = M2(Q,). Call the product of these finitely many primes D. If D =1, then
B = M5(Q) and D is the product of an even number of primes if and only if there exists an
embedding ¢ : B - My(R). For special Z-sublattices O of B called Eichler orders, we may
form the Shimura curve ¥(OY)\H* where O! is the inverse image of SLy(R) under ¢ in O
and H* is either the upper half-plane H of complex analysis if D # 1 or HuP(Q) c P}(C)
if D=1.

Given any integer NV > 1 which we call the level, consider the following example. In the

quaternion algebra (I—Ql) ~ M5(Q) we have the Eichler order

a b
Oo(N): ZCL,b,C,dEZ
Nc d

The Shimura curve Oy(N)'\H* is the classical modular curve Xo(N)c, the geometric

object which gives rise to modular forms. We may generalize this construction from M(Q)



to an arbitrary quaternion algebra in M(R) of discriminant D. Work of Shimura [Shi71]
shows that this X’(N)c may be given the structure of a variety over Q. Shimura also
showed that X (N)q(Q) is non-empty if and only if D =1, i.e., X (N) = Xo(N).

While there is a sense in which the variety XP(N) is canonical, it is not unique. We

understand the non-uniqueness using the following language.

Definition 1.0.1. By a twist of a variety V)q, we will mean a variety V/’Q which is iso-
morphic to 'V over an extension field K. If [K : Q] =2 and w is an automorphism of Viq,

we may uniquely define the twist of V by w and K. [Cla07]

The curve X (N)q comes naturally equipped with a group W = {w,, : m|DN} of Q-
rational automorphisms such that w2, =1 called the Atkin-Lehner group. As an example, if
D =1, then the action of the Fricke involution wy is usually given as the action on H by
the map z —» 5. We use the phrase Atkin-Lehner Twist to denote a twist of XP(N),q by
an Atkin-Lehner involution and a quadratic field K which we fix for the remainder of the
introduction. Conjecturally [KRO§], for all but finitely many D and N, W = Autc(XP(N)c)
and thus any quadratic twist is an Atkin-Lehner twist.

This thesis is concerned with determining the rational points of Atkin-Lehner twists of
Shimura curves. To someone familiar with the theory of elliptic curves, it may be strange to
talk at such length about the presence or absence of rational points on quadratic twists. The
reader should however be cautioned that even genus one curves may possess involutions w
where it may be difficult to determine if a twist by w has rational points as in the following

example.

Example 1.0.2. It can be shown [GR06] that if D =14 and N =1 then XP(N)q can be
given by the affine equation

y? = —xt + 1322 - 128.
Moreover the action of wyy is (x,y) = (x,-y), and so the twist by wys and Q(\V/d) has
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rational points if d is a value of —x* + 1322 — 128 € Z[x]. However, the action of wo is

(z,y) = (=x,y) and therefore the twist of XP(N) by wy and Q(/d) is given by

y? = —d?z* + 13da? - 128.

It is a difficult question to determine for which d this twist has rational points.

Note that in the case D =14 and N =1 we have an explicit equation for X’(IN') because
it is hyperelliptic. It turns out that unless D = 1 or XP(N) is hyperelliptic, there are no
known or conjectured equations for X (NN) [Mol10, p.4]. Therefore we need to use different
techniques.

In chapter 4, we begin by exploring some basics of quaternion arithmetic needed for a
systematic study of Shimura curves. The topics include orders, ideals, ideal classes, embed-
dings of quadratic orders and others. Towards the end we will introduce some novel theorems
on the simultaneous embeddings of imaginary quadratic orders into Eichler orders in definite
quaternion algebras.

In chapter 5, we give the definition of a Shimura curve as a coarse moduli scheme. To
do so, we will review some background on abelian schemes, especially abelian schemes with
“large” endomorphism algebras. After giving a proper definition of a Shimura curve, we
will describe certain well-known models of Shimura curves. Finally, we will study the direct
relation yielded by Ribet’s bimodules between the arithmetic of certain abelian schemes and
the arithmetic of quaternion algebras.

Chapter 6 is where we first study rational points on twists of Shimura curves. That is, if
p is a prime not dividing DN which is unramified in a quadratic field K, we determine when
XP(N)(Qp) is nonempty. The relevant techniques used here are Shimura’s zeta function,
Eichler’s trace formula, and Ribet’s bimodules.

In chapter 7, we study p-adic points on Atkin Lehner twists when p is ramified in K.



As a Z,-regular model for these twists was not previously known, we construct one in this
chapter. We then determine the F,-rational points using either the Serre-Tate canonical lift
of an ordinary abelian variety or the theorems of chapter 4 on simultaneous embeddings.
We then apply Hensel’s Lemma to obtain our results. If we combine these results with the
results of Ekin Ozman [Ozm09], we obtain congruence conditions for the splitting modulo p
of Hilbert Class Polynomials.

In chapter 8, we study p-adic points on Atkin Lehner twists when p|N is unramified in
K. We also obtain criteria for p-adic points on X () when p|N, and no criteria seemed to
be known beforehand. The relevant techniques here are Ribet’s bimodules and the theorems
on simultaneous embeddings in chapter 4.

In chapter 9, we study p-adic points on Atkin Lehner twists when p|D is unramified
in K. We also give a new proof of the criteria for p-adic points on X (N) when p|D, as
determined by Jordan-Livné [JL85] and Ogg [Ogg85|. The relevant techniques here are once
again Ribet’s bimodules and the theorems on simultaneous embeddings in chapter 4.

The theorems of these chapters comprehensively determine the local behavior of these
twisted Shimura curves and are thus too long to state in an introduction. We now pro-
vide explicit examples of families of Shimura curves which have local points everywhere to

illustrate this.

Example (9.2.4). Suppose that q is an odd prime and consider ng(l)/Q, a curve of genus
g. Note that this curve is hyperelliptic over Q if and only if q is one of the following primes
{13,19,29,31,37,43,47,67,73,97,103} /Ogg83, Theorem 7|. Let p=3 mod 8 be a prime such
that (_?p) = -1 and such that for all odd primes { less than 4¢2, (_7?) = —1. Let the twist
of X3U(1) by Q(\/=p) and wy, be denoted by C*1(1,-p,2q))q. Then C*(1,-p,2q) has Q.-

rational points for all places v of Q.

If ¢ = 13, then the genus of X3°(1) is two. Therefore X2°(1) is hyperelliptic, and has the



following explicit model, where wy, is identified with the hyperelliptic involution [GRO04]:

y? = —22°% + 192 - 2422 - 169.

Hence, an explicit model for C?6(1,-p, 2q) is given by the affine equation

y? = 2pa® — 19pa? + 24px® + 169p.

The primes less than 2000 satisfying the congruence conditions in the above example are

p = 67,163, and 1747. It can be checked that the explicit model of C?6(1,-67,26) has at

least the rational points (%9, *11029588) , and that C?6(1,-163,26) has at least the rational points

( +67 £5270116

55 e ) . If p=1747, a point search in sage [S*12]| failed to produce any rational points

and the TwoCoverDescent command in MAGMA did not determine if C?6(1,-1747,26) has no

rational points.

Example (8.2.7). Let ¢ = 3mod 4 be a prime and consider the curve Xo(q)q. Let p =
1 mod 4 be a prime such that (g) = -1 and let C'(q,p,q))q denote the twist of Xo(q) by
Q(\/p) and wq. Then C(q,p,q) has Q,-rational points for all places v of Q.

If ¢ = 23, the least two primes satisfying the above are p = 5 and p = 13. Using a
hyperelliptic model of the genus 2 curve Xy(23) [GRI1| as above, it can be verified that
C1(23,5,23)(Q) is nonempty. Meanwhile, the TwoCoverDescent command in MAGMA deter-

mined that C*(23,13,23)(Q) is empty.

Example 1.0.3. Let ¢ = 3mod4 be a prime. Let p be a prime such that (’5’) = -1 and
p = 1mod8. Let CY(2q,p,2q),q denote the twist of X(2¢),q by Q(\/P) and way. Then

CY(2q,p,2q) has Q,-rational points for all places v of Q.

In chapter 10, we intensively explore Example 1.0.3 when ¢ = 7. In particular, if we

assume a certain well-known conjecture, there are congruence classes of primes p such that
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the twist of X((14) by wis and Q(,/p) not only has rational points, but is an elliptic curve
of rank one. We complete the chapter by conditionally re-deriving some of Shih’s results on
the inverse Galois problem. The relevant techniques are the results of the previous chapters

and the careful study of Selmer and Shafarevich-Tate groups.



Chapter 2

Statements of Main Theorems

Throughout, D is a squarefree product of an even number of primes, N is a squarefree integer
coprime to D, m|DN is a positive integer, and d is a squarefree integer. Moreover, X (N)
is a Shimura curve over Q and CP(N,d,m) is its twist by the automorphism w,, and the

quadratic field Q(V/d).

Corollary (6.3.2). If p + DN s inert in Q(\/d), CP(N, d,m)(Q,) is nonempty when
m=DN.

Theorem (7.0.1). Suppose that p + 2DN is a prime which is ramified in Q(\/d) and m|DN.
Then CP(N,d,m)(Q,) # @ if and only if one of the following occurs.

1. epn(—-4m) #0, (%) =1, and H_4,,(X) =0 has a root modulo p
2. m=3mod4, epn(-m) #0, (%) =1, and H_,,(X) =0 has a root modulo p

3. m=DN, 2+ D, (ﬂ) = -1, (%”) = -1 for all primes q | D, and (%p) =1 for all

p

primes q | N such that q # 2

4. m=DNJ2, 2| N, (7DN/2) = -1, (_—p) = —1 for all primes q | D, and (‘7”) =1 for all

p q

primes q | N such that q # 2



5. m=DN, 2| D, p=4+3modS8, (%) = -1, (%p) = =1 for all primes q | (D/2), and

(%p) =1 for all primes q | N.

6. m=DN/2, 2| D, DN =2,6, or 10 mod 16, p = +3 mod 8, (*D’W) -1, (‘—P) =1 for

p q

all primes q | D, and (%p) =1 for all primes q | N.

Theorem (8.0.1). Let p | N be unramified in Q(\/d) and m | DN. Then CP(N,d,m)(Q,)

is nonempty if and only if the conditions of (a) or (b) hold.
(a) p is split in Q(\/d) and one of the following conditions holds.

e D=1

p=2, D =TI, p; with each p; =3 mod 4, and N [p =1, q; with each q; =1 mod 4

p=3, D=TI;p; with each p; =2mod 3, and N[p =1, q; with each q¢; =1 mod 3

The following inequality holds

[2v/7P] eD,N/p(%>

- >0
0¢s=—[2y/p] fIf (s*~4p) W ( fzp)

(b) p is inert in Q(~/d), and there are prime factorizations Dp = [1;p;, N/p = [1,q; such
that one of the following two conditions holds
(i) p|m, and one of the following two conditions holds.
e p=2, m=p or DN, for all i, p; =3 mod 4, and for all j, ¢; =1 mod 4
e p=3mod4, m=p or2p, for all i, p; # 1 mod 4, and for all j, ¢; # 3 mod 4
(1) p+m and one of the following nine conditions holds.
em=D=1
e p=2,m=1, for all i, p; =3 mod 4, and for all j, g =1 mod 4
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e p=3,m=1, for all i, p; =2 mod 3, and for all j, ¢j =1 mod 3
e p=3mod4, m=DN/2p, p; # 1 mod 4 for all i, and q; # 3 mod 4 for all j

e p=2mod 3, m=DN/3p, p; # 1 mod 3 for all i, and q; # 2 mod 3 for all j

m=DN|/p, p; # 1 mod 4 for all i, and q; # 3 mod 4 for all j

m=DN|/p, p; #1 mod 3 for all i, and q; # 2 mod 3 for all j

€pp,N/p(=4mp)
mp # 3mod 4 and (p+ 1) = tr(Tym) > 440

—_ € D, (_m ) s p(_4m )
mp=3mod4 and (p+1) —tr(T,,) > Dw]\(jfﬂp) Py eDuJ)V(/_Almp)p

Theorem (9.0.1). Suppose that p | D is unramified in Q(~/d) and m | DN. Let p;, q; be

primes such that D[p =TI, p; and N = Hj qj-

e Suppose p is split in Q(\/d). Then CP(N, d,m)(Qp) is nonempty if and only if one

of the following two cases occurs [Theorem 9.2.2].

1. p=2, pi=3mod4 for all i, and g; =1 mod 4 for all j

2. p=1mod4, D=2p, and N =1
e Suppose that p is inert in Q(\/d).

— If p| m, CP(N,d,m)(Qy) is nonempty if and only if one of the following four
cases occurs.
1. m=p, p;# 1mod 3 for all i, and ¢; # 2 mod 3 for all j [Lemma 9.1.3]
2. m=2p and one of epj, n(=4) or epp n(=8) is nonzero [Lemma 9.1.4]
3. m/p#3mod4 and epy, n(—4m/[p) is nonzero [Lemma 9.1.4]

4. m/p=3mod 4 and one of epj, n(=4m/[p) or epyp N(=m/p) is nonzero [Lemma

9.1.4]
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— Ifp+ m, CP(N,d,m)(Q,) is nonempty if and only if one of the following four
cases occurs [Theorem 9.2.2].
1. p=2,m=1, p;=3mod4 for all i, and ¢; =1 mod 4 for all j
2. p=1mod4, m=DN/(2p), for all i, p; # 1 mod 4, and for all j, ¢; # 3 mod 4
3. p=2, m=DN/2, p;=3mod4 for all i, and ¢; =1 mod 4 for all i

4. p=1mod4, m=DN/p, for all i, p; #1 mod 4, and for all j, g; # 3 mod 4
Theorem (4.2.1). Fix square-free positive integers D', N' such that (D', N') =1 and D’ is

the product of an odd number of primes. Fix also m > 1 such that m|D'N’. The following

are equivalent.

1. There is a definite quaternion algebra B’ over Q of discriminant D', an Fichler order
O’ of level N' in B’ and elements wy and wy contained in O' such that w? = -1 and

w5 =—m.
2. There are factorizations D" =], p; and N' =T]; q; into distinct primes such that
e m=D'N'"or2|D'N' and m = D'N'[2
e for all i either p; =2 or p; =3 mod 4
e for all j either ¢j =2 or ¢; =1 mod 4
Theorem (4.2.5). Fix squarefree positive integers D', N' such that (D', N') =1 and D’ is

the product of an odd number of primes. Fix also m|D'N’ such that m > 1, m + 3. The

following are equivalent

1. There is a definite quaternion algebra B’ of discriminant D', an Fichler order O of

level N' in B' and 224, wy € O' such that w? = -3 and w3 = —-m.

2. There are factorizations D" =1, p;, N' =T1;q; into distinct primes such that

12



e m=D'N', or3|D'N" and m=D'N'[3
e for all i either p; =3 or p; =2 mod 3

e for all j either q¢; =3 or ¢j =1 mod 3

Theorem (4.2.9). Let D be the squarefree product of an even number of primes, N a square-
free integer coprime to D, and p a prime not diwiding DN. Let B' = Bp, and let m | DN be

an integer greater than one. We have the following equivalences.

1. Suppose that 2 + DNp. There is an Eichler order O’ of level N in B’ and embeddings
U1 Z[/=p] = O and ¢y : Z[\/-m] <> O' if and only if m = DN, (%p) = -1 for all
primes q | D, (_7”) =1 for all primes q| N, and (%) =-1.

2. Suppose that 2 | N. There is an FEichler order O' of level N in B’ and embeddings
1 Z[\/=p] = O and 1y : Z[\/-m] > O' if and only if one of the following two cases

OCCUurs.

e m=DN, (%p) = -1 for all primes q | D, (‘7”) =1 for all primes q | (N/2), and
()=

e m=DN/2, (%’) = -1 for all primes q | D, <%p) =1 for all primes q | (N/2), and
(2) -

p

3. Suppose 2 | D and (%) = —1. There is an Fichler order O of level N in B’ and
embeddings 1 : Z[\/=p] = O" and 1y : Z[\/-m] = O" if and only if m = DN, (%) =-1
for all primes q | (D/2), p# 7mod 8, and (%p) =1 for all primes q | N.

4. Suppose 2 | D and (%) = 1. There is an Fichler order O' of level N in B’ and
embeddings U = Z[\/=p] = O' and 1y : Z[\/-m] <= O' if and only if m = DN/2,
DN =2,6, or 10 mod 16, (%p) = -1 for all primes q| (D/2), p# 7 mod 8, and (%p) =1

for all primes q | N.

13



5. Suppose that p = 2. There is an Fichler order O of level N in B’ and embeddings
U L[\/=p] = O and s : Z[\/-m] = O' if and only if m = DN = £3 mod 8§, (%) =-1

for all primes q | D, and (‘72) =1 for all primes q| N.

Corollary (7.0.3). Letp + 2 be a prime and let N be a squarefree integer such that (%) =-1.
It follows that the Hilbert class polynomial H_4n(X) has a root modulo p if and only if for
all odd primes q | N, <_—p) =1.

q

Theorem (10.0.1). Assuming Conjecture 10.4.1, if p is a prime congruent to one of 17,33 or
41 mod 56 then C1(14,p,14) has infinitely many Q-rational points, and in fact is an elliptic

curve of rank one over Q.
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Chapter 4

Quaternion Arithmetic

This chapter will give the background in quaternion arithmetic necessary to study Shimura
curves and their twists. Most of this material is not new and can be found in the papers and
books of Eichler |Eic73] and Vigneras [Vig80]. The new material in this chapter is found
in section 4.2, and concerns the question of simultaneous embeddings of quadratic orders
into Eichler orders of squarefree level in a definite rational quaternion algebra. These results
will be used in section 5.3 to control the arithmetic and geometry of so-called superspecial
surfaces. Theorems based upon Theorem 4.2.9 will in turn be used to prove results on
rational points in Chapter 7. Theorems based upon Theorem 4.2.1 and Theorem 4.2.5 will

be used to prove results on rational points in Chapters 8 and 9.

4.1 Basic definitions and theorems

Definition 4.1.1. A quaternion algebra over a field K is a four-dimensional central simple

K-algebra.

Example 4.1.2. If the characteristic of K is not 2, and a,b € K* then there is a quaternion

algebra over K which we denote (afb) This algebra has a K-basis (1,1, j, k) such that i® = a,

17



j2=band k=1j = —7i.

Definition 4.1.3. Let K be a number field. We say that a quaternion algebra B is ramified

at a place v of K if B®y K, is a division algebra.

Definition 4.1.4. If K = Q, we say that a quaternion algebra B is definite if B is ramified

at infinity. Likewise we say that B is indefinite iof B is unramified at infinity.

It is well-known that if K is a number field, the quaternion algebras B are determined
up to isomorphism by the even number of places of K at which B ramifies [Milll, Example
VIIL.4.4(b)|. It follows that if K = Q, B is definite if and only if B is ramified at an odd

number of primes. Therefore we make the following definition.

Definition 4.1.5. Let D > 0 be a squarefree positive integer. Let Bp denote the unique
quaternion Q-algebra such that Bp is ramified at p if and only if p| D. To any quaternion
Q-algebra, we associate its discriminant disc(B), the unique positive squarefree number such

that B = Bdisc(B)-

Definition 4.1.6. Let B be a quaternion K -algebra and let a — @ denote the main involution

of B over K [Shil0, IV.20.6a]. Define the trace a — tr(a) = a+a and the norm N(a) = aa.

Definition 4.1.7. A Z-order O in a quaternion Q-algebra B is a rank four Z-subalgebra of
B such that for all 8 € O, tr(0) € Z and N(0) € Z.

Definition 4.1.8. The discriminant of a Z-order O with a Z-basis ey, ..., e4, is disc(O) =
det(tr(e;e;)).

Lemma 4.1.9. [Vig80, Corollaire 1.4.8] If Oy > Oy then disc(Oy) | disc(Os). Moreover,

disc(O
[01:02] =\ /|53

so if disc(Oy) = disc(O1) then Op = O,.

Definition 4.1.10. An order in a quaternion algebra will be called maximal if it is maximal

with respect to inclusion.
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Lemma 4.1.11. [Vig80, Corollaire I1.5.3] An order O in a quaternion Q-algebra B is
mazximal if and only if disc(B) = /| disc(O) |.

If an order O is contained in two maximal orders O; and Oy, then [O;: O] =[O : O] by

Lemma 4.1.9.

Definition 4.1.12. A Z-order O c B is called an Eichler order when it is the intersection
of two (not necessarily distinct) mazimal Z-orders. The level of an Eichler order is its index

i either maximal order.

Definition 4.1.13. By Lemma 4.1.9, if O is an Fichler order, \/| disc(O) | is a positive

integer, which we may sometimes refer to as the reduced discriminant.

Definition 4.1.14. Let Z,> denote the unique irreducible unramified degree two ring exten-

sion of Z,.

Lemma 4.1.15. Let B be a quaternion Q-algebra ramified at p. Then B® Q, has a unique
mazimal Z,-order O. Moreover, there exists an element m € B® Q,, such that 720 = pO and

OzZ, @y, . It follows that for a € Z,2, mar™ = o(a) where (o) = Autg, (Z,2).

Proof. The uniqueness of a maximal order for a division quaternion algebra over any local
field K and its structure as a Zg-module is well-known [Vig80, Corollaire I1.1.7]. Since
O is unique, conjugation by m is an automorphism of . In fact, conjugation by = is an
automorphism of Z,. since 7Z, commutes with 7. If 7 commuted with all of Z,2, then O
and thus B would be commutative, a contradiction. Therefore conjugation by 7 induces the

unique non-identity element of Autz,(Z,:). O

Hereon, we suppress the Z as all of our quaternion algebras will be over Q (or be the

base change of a quaternion algebra over Q).

Lemma 4.1.16. [Vig80, Lemme I1.2.4], [Vig80, Corollaire 1I11.5.2] Let B be a quaternion
Q-algebra and O an Eichler order of level N. If p + disc(B), then there is an embedding
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O®Z, > My(Z,). Moreover there is a unique integer n such that O ® Z,, is conjugate to an

order in Ms(Z,) of the form

Z, 7

P

p"Z, Z,

p

We may explicitly give n as the non-negative integer such that p* | N but p"** + N.
Definition 4.1.17. We say that an order O is ramified at p if p| disc(O).

Definition 4.1.18. [Eic73, p.17] Let B be a quaternion algebra over Q and O c B an order.
A left O-ideal 1s a left O-module M contained in B such that OM = M and for all primes
p of Q, there exist my, € B such that Z, ® M =7, ® Om,. If M is a left O-ideal then we
call O.(M) := {x € B: Mx c M} the right order of M. We say that M is two-sided if
O =0,.(M). We may similarly define right ideals I and their left orders O,(I).

Definition 4.1.19. Let B be a quaternion algebra and O c B an order. We say that a (left,
right or two-sided) O-ideal M is integral if M c O.

Definition 4.1.20. Let B be a quaternion algebra and O c B an order. We say a left O-ideal

M s principal if there is some m € B such that M = Om, and similarly for right O-ideals.

Lemma 4.1.21. If B is indefinite and O is an Eichler order in B (of any level), then every
left (or right) O-ideal is principal. Therefore, the FEichler orders (of any given level) are

conjugate.

Proof. If B is indefinite, then {oo} satisfies the Eichler Condition [Vig80, Definition, p.81].
Therefore, the class number of O is the class number of Q [Vig80, Corollaire I11.5.7(1)|. This
is to say, the class number of O is one. Then we note that the number of left (or right) ideals
up to isomorphism of an Eichler order (of any level) is at least the number of Eichler orders

(of that level) up to conjugation, and this can be made precise [Vig80, Lemme II1.5.6]. O
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Lemma 4.1.22. If B s definite and O is an Eichler order in B then O is finite. The

number of left (or right) ideals up to right (or left) multiplication by B* is finite.

Proof. In a maximal order there are only finitely many units [Vig80, Proposition V.3.1], and
any order is contained in a maximal order. The finiteness of left (or right) ideal classes is
true in broad generality. If F' is a totally real field and B/p is a totally definite quaternion
algebra (which is to say that for all embeddings € : ' - R, B ®. R is division) and O is
an Eichler Zg-order of B then the left O-ideals up to B*-multiplication is finite [Vig80,

Corollaire V.2.3|. O

Lemma 4.1.23. [Eic73, Theorem II.1.1] Let B be a quaternion algebra of discriminant D.
If O is an FEichler order of square-free level N in B, then the two-sided ideals of O form
an abelian group under multiplication. For each prime p | DN, there is a unique two-sided
integral ideal g, such that p; = Op = pO. Moreover, any two-sided ideal of O 1is equal to one

of the form

(I o)r

p|DN

where r € Q and €, € {0,1}.

Definition 4.1.24. Let A be a finitely-generated, torsion-free Z-algebra, let AY be A®zQ and
let €4 : A — A° be the natural embedding a — a ® 1. Suppose that there exists an embedding
¢ Ay > Ay of finitely generated torsion-free Z-algebras. Define ¢° : A? - AY to be the induced
embedding a @ /s — ¢(a) ® r/s. We say that ¢ is optimal if €4, (A1) = (¢°) (e, (A2)).

Let ¢ : Ay - A be an embedding of finitely generated torsion-free Z-algebras. Define
AL = (%) 1(ea,(Az)) and note that A] is a finitely generated torsion-free Z-algebra. Note
also that AY 5 A} o A; because ¢° induces an embedding A} < As. Moreover, this embedding
is an optimal embedding ¥ : (¢°)~1(€4,(As)) - As.

We define optimal embeddings in order to study embeddings of quadratic orders into

quaternion orders. Namely, if R is an order in a quadratic number field K, then any em-

21



bedding of R into a quaternion order O is optimal for some order R’ where K > R’ o R.
We shall see in Theorem 4.1.28 that there are strictly numerical criteria for optimal embed-
dings of quadratic orders into quaternion orders O, and so summing those conditions over

all K o R’ o R gives criteria for any embeddings of R into O.

Definition 4.1.25. Let A be an integer which is congruent to zero or one modulo four.
We will denote by Ra the unique quadratic order of discriminant A. If A is not a square,
RA ® Q is a quadratic field Ka = Q(\/Z) In this case, we may define the class number
h(A) = #Pic(Ra) and the conductor f(A) :=[Zk, : Ra]. We also fixr w(A) = #R}.

Definition 4.1.26. Let p be a prime, and let (5) denote the Kronecker symbol. That is, if p
1s odd, the Kronecker symbol is the Legendre symbol. If p =2 then (%) =0 and if q is an odd
prime then (1) = (-1)@*-D/8 We obtain the Kronecker symbol by extending multiplicatively.

The FEichler symbol may then be defined in terms of the Kronecker symbol as follows:

{é} 1 plf(A)

(%) else

Definition 4.1.27. For square-free coprime integers D and N and some integer A = 0,1 mod

4, we define the quantity

om0+ )

Theorem 4.1.28 (Eichler’'s embedding theorem). Let D and N be square-free coprime in-
tegers. If Bp is indefinite, i.e. if an even number of primes divide D, then the number of
optimal embeddings of a quadratic order R of discriminant A into some Fichler order O of
square-free level N in Bp up to O* conjugacy is ep n(A). If Bp is definite, i.e., if an odd

number of primes divide D, then the number of optimal embeddings of a quadratic order R of
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discriminant A into some Eichler order O of square-free level N in Bp up to O* conjugacy

18 6D7N(A)/w(A).

Proof. This is proven separately in the indefinite case [Vig80, Corollaire I111.5.12] and in the

definite case |Eic73, Proposition 5]. O

Corollary 4.1.29. If DN is square-free, Z[\/-1] = Z[(4] embeds into an Fichler order of
level N in Bp if and only if for all p| D, p=2 or p=3mod4, and for all ¢| N, ¢ =2 or

q =1 mod 4.

1+v-3
2
of level N in Bp if and only if for allp| D, p=3 or p=2mod 3, and for all q| N, ¢=3 or

Corollary 4.1.30. If DN is square-free, Zl ] = Z[(s] embeds into an Eichler order

¢ =1 mod 3.

4.2 Simultaneous embeddings into Eichler orders

In the following section, we describe sone new results on embeddings of quadratic orders into
Eichler orders of definite quaternion algebras in the style of Brzezinski and Eichler [BE92].
These results will be useful in the remainder of the thesis.

Let B’ be a definite quaternion Q-algebra. Suppose that there exist w;,ws € B’ such that
w? = —q and w? = —d for ¢,d € Z. Then clearly wjwy € B’ is of norm gd. Although w; and w, are
integral, it may be the case that wyws is not integral. We only know that tr(wiws) < 4qd. In
order for wyws to be integral it is necessary and sufficient that tr(wjws) = wiws +wow; = s € Z.

Now let us grant that tr(wiws) € Z. Since wi,ws, and wywy are integral, any order O’
that contains w; and ws contains wyws. Note that the Z-module generated by 1, wy, ws and
wiwe is an order of B’ if and only if (1,w;,ws,wiws) is a basis for B’ over Q.

In the latter case, we may compute that the reduced discriminant of Z & Zw1 & Zw,® Zww-
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1+w

is 4gd - s*. If ¢ =3 mod 4, Lis integral and the reduced discriminant of

14wy + w1

1
Zo7Z ®Zws ®7Z

w2

is dg— (3)".

We now prove the following.

Theorem 4.2.1. Fix square-free positive integers D', N' such that (D', N') =1 and D' is
the product of an odd number of primes. Fiz also m > 1 such that m|D'N'. The following

are equivalent.

1. There is a definite quaternion algebra B' over Q of discriminant D', an Fichler order
O’ of level N' in B’ and elements wy and wy contained in O such that w? = -1 and
wsy = —m.
2. There are factorizations D' =T1;p; and N’ =[], q; into distinct primes such that
e m=D'N'"or2|D'N' and m = D'N'[2
e for all i either p; =2 or p; =3 mod 4
e for all j either ¢; =2 or gj =1 mod 4
Proof. For (1) = (2), we know in the first place by Eichler’s Theorem on embeddings that
if Z[(4] = O’ then p; =2 or p; =3 mod 4 and ¢; =2 or ¢; = 1 mod 4. While a priori it may
seem that we could use Eichler’s theorem to narrow down the possible choices of m, it is
more profitable to directly use the knowledge that we have simultaneous embeddings and
conclude at the end that D’N' and (if possible) D’N’/2 satisty Eichler’s Theorem.

Since m > 1, Z[(4]  Z[/-m] and vice versa. Therefore O’ 5 Z & Zw; & Zw, ® Zww, and

som | D'N'"|4m - s%. If s =0, we have m | D’N" | 2m since D'N’ is squarefree.
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If s #0, m|4m-s? implies that m | s and m < |s|. Since m? < s? < 4m, we have m < 4 and
in fact m=2or m=3. If m=2 and 0 < s2 < 4m =8 then m|s implies that |s| = 2 and thus
2| D'N'"| 4. Then D'N’ square-free and D’ > 1 implies that m = D' = D'N’'=2. If m = 3 and
0 < s <4m =12 then m | s implies that |s| =3 and thus 3| D'N’ |3 so m=D"=D'N’=3.

-1,-3
For (2) = (1), we may exclude the case D’ N’ = 3 because the quaternion algebra ( é )

of discriminant 3 has a unique maximal order.

-1,-D'N’
@ 1+w

for now to be generated by w; and ws, fixing w? = —D’N’ because if 2 | D'N’, ( 5 1)w2

Therefore it suffices to consider the quaternion algebra A = ( ) which we take

squares to —D'N'/2.

We note first that under these conditions, A has discriminant D’. First we note that if p
does not divide D' N’ then A splits over Q,, because the Chevalley-Warning theorem [Ser73,
§1.2.2| tells us that a four variable quadratic form over a finite field is isotropic. Hence by
Hensel’s Lemma we are done. If p | D’N’ is an odd prime, then z2? + y? represents p if and
only if p = 1 mod 4 so again by Hensel’s Lemma, A does not split over Q, for p odd if and
only if p | D’. Finally if 2 | D’ then D’N’/2 = 1mod 4 so D'N’ = 2mod 8 and thus —D'N’
is not a sum of two squares in Z/8Z. If 2| N', D'N’/2 =3 mod 4 so D'N’ =6 mod 8 and so
—D'N' is a sum of squares in Q5.

We now exhibit an explicit order O’ of level N’.

1
If 2+ D'N’ then D'’N’ =3 mod 4 and so W

1
is integral and so Z & Zw, ® Z ( i w2) ®

2
1+ wy

Zw1 (

If 2| D'N', let wh = (

) has reduced discriminant D’'N'’.

1+w;

)Wg then as before, the reduced discriminant of Z & Zw, &

Zwl ® Zw wy is 4D'N'[2 =2D'N’. In this case, we consider the “Hurwitz quaternions”

1+wy +wh +wiwh

ZeoZw ®Zw,eZ 5

which have reduced discriminant D’ N’. O
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We note that we gave a very explicit example of an order satisfying Theorem 4.2.1 (1) in

the proof above. An interesting fact is that such an order is unique up to B*-conjugacy.

Theorem 4.2.2 (Pizer). Let B’ be a definite Q-quaternion algebra and suppose that for all
p | disc(B’), (%) = —1. Let N be a squarefree integer such that for all p | N, (_le) =1.
Then there is a unique conjugacy class of Eichler orders of level N in B’ into which Z[(4]
embeds.

Similarly, suppose that for all p | disc(B’), (_—3) = -1, and let N be a squarefree integer
p

such that for all p | N, (_—3) = 1. Then there is a unique conjugacy class of Fichler orders
p

of level N in B’ into which Z[(s] embeds.

Proof. Let o be an order in an imaginary quadratic field. Recall the definition given by Pizer
[Piz76, Definition 11] of D(0) as the number of (B’)*-conjugacy classes of Eichler orders of
level N in B into which o is optimally embedded. During the proof of Theorem 16 on page
73 of the same article, it is proven that if o = Z[(4] then D(o0) is zero or one depending on
whether or not there is an optimal embedding. Similarly on page 75 of the same article, the

same thing is proven for Z[(g]. O

Corollary 4.2.3. Let B’ be a definite quaternion algebra of discriminant D', and let O' be
an Eichler order of B’ of squarefree level N' such that Z[(4] = O'. If m | D'N’ and m + 1,
then Z[/-m] = O" if and only if m = D'N’ or 2| D'N’ and m = D'N'/2.

Proof. Since there exists some ¢y : Z[(4] = O', O is unique up to B*-conjugacy. If there
exists some ¢y : Z[v/-m] = O’ then let w; = ¢1(¢) and wy = ¢do(v/-m). It follows that
O' > Z & Zw & Zws & Zwyws since m + 1 and so neither quadratic order is contained in the
other. By Theorem 4.2.1, m = D’N’ or D'N'/2.

Suppose now that m = D'N’ or D'N’/2. By Theorem 4.2.1, there is some order & of

B’ admitting embeddings of both Z[{4] and Z[\/-m]. Since & admits an embedding of
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Z[(4], it must be conjugate to 0" by Theorem 4.2.2 and thus O’ admits an embedding of

ANED) O

-1,-D'N’
Corollary 4.2.4. When the conditions of Theorem 4.2.1 are satisfied, B’ = (’—)

Q
and O is (B")*-conjugate to one of the following:
1. The unique maximal order in B’ if D" =2 or 3.

2. ZoZioZH & Z5E if 2+ D'N'.

3. ZeoZioZ o Z (L + 8E) if 2| D'N.

k
Moreover if 2| D' N' we note that the order in 3. contains , a square root of ~D'N'[2.

We now turn our attention to simultaneous embeddings of Z[(s] and Z[\/-m].

Theorem 4.2.5. Fiz squarefree positive integers D', N' such that (D', N') =1 and D’ is the
product of an odd number of primes. Fix also m|D'N’ such that m > 1, m # 3. The following

are equivalent

1. There is a definite quaternion algebra B' of discriminant D', an Fichler order O' of

level N' in B' and 224, wy € O' such that w? = -3 and w3 = -m.

2. There are factorizations D" =T1;p;, N' =TI, q; into distinct primes such that

e m=D'N', or3|D'N" and m=D'N'[3
e for all i either p; =3 or p; =2 mod 3

e for all j either q¢; =3 or ¢j =1 mod 3

Proof. To show that (1) implies (2), we note first by Eichler’s Theorem on embeddings that
if Z[(s] = O’ then p; =3 or p; =2 mod 3 and ¢; =3 or ¢; =1 mod 3.
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Note that since m > 1 and m # 3, Z[(s] 4 Z[\/-m] and vice versa. We know that since

O'>ZoZ(H2) e Zw, ® Z (22 ) wo, m | D'N' | 3m - (s/2)%. If s = 0, we have the result

that m | D'N" | 3m.

If s 0, m|3m-(s/2)? implies that m | (s/2) and m? < (s/2)?2 <3m so m = 2. If
0<(s/2)?<6 and 2| (s/2) then s=4som=D"=D'N'=2.

To show that (2) implies (1), we may exclude the case D’ N’ =2 because the quaternion

—-1,-

1
algebra (—) of discriminant 2 has a unique maximal order. Therefore it suffices to

Q
— _DIN/
consider the quaternion algebra A = (S’T

wy and wy, fixing w? = —D'N' because if 3 | D'N’, (wjwz)? = =3D'N’ so (1/3)wws squares to
2

) which we take for now to be generated by

-D'N'/3.

We note first that under these conditions, A has discriminant D’. First we note that if
p does not divide D' N’ then A splits because the Chevalley-Warning theorem [Ser73, §1.2.2]
tells us that a four variable quadratic form over a finite field is isotropic. If p | D'N' is an
odd prime, then 2 + 3y? represents p if and only if p=1mod 3 or p=3, and if 2 | D', A does
not split because 2 + 3y? is not isotropic over Q.

We now exhibit an explicit order O’ of level N'.

e If 3| D'N’ then w) = %wg is such that (w})?+ D'N’/3 =0 and so the reduced discrim-

1
inant of Z ® Z it

1
® 7w, © z%w; is 3(D'N'/3) = D'N".

1
o If 34+ D'N’, then D'N’ = -1 mod 3. Therefore we can show that o = Z +2w1’ B =
1 - -2
+2w2 P Bl S B v = 3+W16 W2 are all integral with N(a) =1, N(B) =

D'N"+1
N ==

Eichler order of level N’ in A.

. It can thus be easily calculated that Z ® Za @ Z [ @ Z is a suitable

]

Corollary 4.2.6. Let B’ be a definite quaternion algebra of discriminant D' and let O be
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an Eichler order of B' of squarefree level N’ such that Z[(s] = O'. If m | D'N’ and m # 1,3,
then Z[\/-m] <= O" if and only if m = D'N' or D'N'/3.

Proof. Since there exists some ¢y : Z[(s] = O', O is unique up to B*-conjugacy. If there
exists some ¢g : Z[/-m] = O’ then let w; = 2¢1({s) — 1 and wy = Po(v/—m). It follows that

O'>Ze Z“QW1 ® Zwy @ Z“;l wy since m # 1,3 and so neither quadratic order is contained in
the other. By Theorem 4.2.5, m = D'N’" or D'N'/3.

Suppose now that m = D'N’ or D'N’/3. By Theorem 4.2.5, there is some order & of
B’ admitting embeddings of both Z[(s] and Z[\/-m]. Since & admits an embedding of
Z[(s], it must be conjugate to 0" by Theorem 4.2.2 and thus O’ admits an embedding of
Z[v=m). =
-3,-D'N ’)

Corollary 4.2.7. When the conditions of Theorem 4.2.5 are satisfied, B’ = ( Q

and O' is B*-conjugate to one of the following:

1. The unique mazimal order in B’ if D' =2

2. ZoZH o Z (1 + BE) @ Z=22E if3 + D'N'

i k=j
5. ZoZ o Zk 0 Z L if 3| D'N'
Moreover if 3| D'N’, the order in 3. contains k/3, a square root of —D'N'[3.
We prove one final theorem on simultaneous embeddings. For the remainder of the
section, let D be the squarefree product of an even number of primes, N a squarefree integer

coprime to D, and p a prime not dividing DN. We shall also set B’ := Bp,, and let m | DN

be an integer greater than one.

Lemma 4.2.8. We have the following isomorphisms of Q-algebras.

q q

(%) =-1, then B' & (%)‘

1. If 2 + DNp, (i’) = =1 for all primes q | D, (;p) = 1 for all primes q | N, and
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2. If 2| N, (%p) = =1 for all primes q | D, (_?p) = 1 for all primes q | (N/2), and

(%) = -1, then B' = (7p’EQDN) = (_p’_gN/Z)'

3. If2| D, (%p) = -1 for all primes q | D, (%p) =1 for all primes q | N, and (%) =-1,
then B'~ (#).

4. If2| D, ( . ) =1 for all primes q | D, ( ) =1 for all primes ¢ | N, and (%{V/?) =-1,
then B’ = [ 2 SN/2>

5 Ifp = (72) = =1 for all primes q | D, and (’72) = 1 for all primes q | N then
o)

Proof. Let ¢ be an odd prime, and let m | DN so that if an odd prime divides DN then it

divides m. Recall that B(m) := (_p Q_m) is ramified at ¢ if and only if the quadratic form
22 + py? + mz? + mpw? is anisotropic over Q, if and only if it is anisotropic over F,.

If ¢ + DNp, then ¢ + m and ¢ 4+ p so by the Chevalley-Warning Theorem, B(m) is
unramified at ¢. If ¢ | N then 22 + py? is isotropic over F, because (%) =1, so B(m) is
unramified at g. If ¢ | D then 22 + py? is anisotropic over F, because (_?p) =-1so B(m) is
ramified at ¢q. If p is odd and m is an integer such that (%) = —1 then 22 +my? is anisotropic
over F,, so B(m) is ramified at p. Finally note that B ® R is division.

Therefore, if 2 + DNp then B(m) = B’ = Bp,, or equivalently, B(m) is unramified at
2. If B(m) were ramified at 2, it would be ramified at an odd number of places of Q, and
hence B(m) is ramified precisely at the primes dividing Dp.

If 2| N then p is odd, all primes not dividing DNp are odd, and hence B(m) = B’
whether m = DN or DN/2.

If 2| D, then p is odd and we have (%p) = (%) = (%) = —1. Therefore

(2 (222) () (222).
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so m=DN or DN /2 but not both. Whether m = DN or DN /2, we have shown that B(m)
is ramified at p, oo and precisely the odd number of odd primes dividing D. It follows that
for the appropriate choice of m, B(m) is ramified at 2 and thus B(m) = Bp,.

If p=2 then B(m) is ramified both at co and at the even number of primes dividing D,

so it must be ramified at 2. It follows that B(m) = B'. O

Theorem 4.2.9. Recall that D is the squarefree product of an even number of primes, N
a squarefree integer coprime to D, and p a prime not dividing DN. Recall further that

B’ = Bp, and let m| DN be an integer greater than one. We have the following equivalences.

1. Suppose that 2+ DNp. There is an Fichler order O' of level N in B’ and embeddings

U1 2 Z[\/p] = O and o : Z[\/-m] = O if and only if m = DN, (%p) = -1 for all

primes q | D, (%p) =1 for all primes q| N, and (%) =-1.

2. Suppose that 2 | N. There is an FEichler order O' of level N in B’ and embeddings
U1 Z[\/=p] = O and 1y : Z[/-m] > O" if and only if one of the following two cases

occurs.

e m=DN, (%p) = -1 for all primes q | D, (%p) =1 for all primes q | (N/2), and
()

e m=DN/2, (%’) = -1 for all primes q | D, <%) =1 for all primes q | (N/2), and
(—DN/Q) -1

p

3. Suppose 2 | D and (%) = —1. There is an Eichler order O' of level N in B’ and
embeddings Uy : Z[/=p] = O" and 1y : Z[\/-m] = O" if and only if m = DN, (%) =-1
for all primes q | (D/2), p# 7mod 8, and (_7”) =1 for all primes q | N.

4. Suppose 2 | D and (%) = 1. There is an Fichler order O of level N in B’ and
embeddings U = Z[\/-p] = O and ¥y : Z[\/-m] = O’ if and only if m = DN/2,
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DN =2,6, or 10mod 16, () = =1 for all primes q | (D/2), p#7mod 8, and (2) =1

for all primes q | N.

5. Suppose that p = 2. There is an Fichler order O of level N in B’ and embeddings
U1 Z[\/=p] = O and )y : Z[/-m] > O" if and only if m = DN = £3 mod 8, (%) =-1

for all primes q | D, and (‘72) =1 for all primes q| N.

Proof. Suppose first that there exist embeddings ¢ : Z[\/=p] = O’ and 5 : Z[\/-m] = O’
into some Eichler order O’ of level N in Bp,. Let wy = ¢1(\/=p) and wy = ¢(y/—m), so

O’ 2 {1,wy,wq,wiws}. Since (p,m) =1, Z[\/=p] ¢ Z[/-m] and Z[\/-m ¢ Z[./=p]. Thus,
O ' >7Z & Zw, & Zwy ® Ziwiwo,

an order of reduced discriminant 4mp — s> where s is the trace of wjwy. Therefore DNp |
4dmp - s%, and since mp | DNp, we must have mp | s2. Since mp is squarefree, mp | s and so
either mp <| s | or s = 0.

If s # 0 then m?p? < s? < 4mp and thus mp < 4. However, recall that m is an integer
greater than one and p is a prime, so mp > 4. Therefore s = 0 and mp | DNp | 4mp.
In fact, since DNp is squarefree, it divides the squarefree part of 4mp. If 2 + mp then
mp | DNp | 2mp and either 2 + DN and m = DN or 2| DN and m = DN /2. If 2| m then
mp | DNp | mp and so m = DN. If p = 2 then once more mp | DNp | mp and so m = DN.
Recall now that if n is squarefree and ¢ is an odd prime then {%} = (ﬁ) = (%). Therefore

q

Theorem 4.1.28 gives us the following congruence conditions.

e If 2 + DNp then <_7p) = -1 for all primes ¢ | D, (_?p) =1 for all primes ¢ | N, and
()=

e If 2| N and m = DN then (%p) = —1 for all primes ¢ | D, (%) = 1 for all primes
q| (N/2), and (%) =-1
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If 2| N and m = DN/2 then (_?p) = -1 for all primes ¢ | D, (_7”) =1 for all primes
g (N/2), and (2222) = -1

p

If 2| D and m = DN, then (_?p) = —1 for all primes ¢ | (D/2), p = £3mod 8, and

(%) =1 for all primes ¢ | N.

If 2| D and m = DN/2, then DN =2,6,10 mod 16, (%p) = -1 for all primes ¢ | (D/2),

p = +3 mod 8, and <%) =1 for all primes ¢ | N.

If p=2then DN = +3 mod 8, (’?2) = -1 for all primes ¢ | D, and (’?2) =1 for all primes

q| N.

A word may be required on why we have no congruence conditions on p at 2 or DN /2
at 2 when 2 | N. If p = 3mod 4 then 2 | f(-4p) and thus {#} =1. If p=1mod4 then
2 + f(-4p) and thus {%“p} = (52) = 0. The same holds for DN/2 since DN/2 is odd.

We now prove the converse when 2 + DNp. By Lemma 4.2.8(1), Bp, = B’ = (%).
Contained in B’ is the order Z® Zi® Zj & Zij of reduced discriminant 4D Np. If p=3 mod 4
then Z ® Z% VARV (%) J is an appropriate order of discriminant DNp, and is thus an
Eichler order of level N. Likewise if DN = 3 mod 4 there is an appropriate Eichler order of
level N. Assume now that p =1 mod 4. Then

F29-(2)- 16)- 1) L)

p p dDN \P/ gDN q|DN

where 7 is the number of primes ¢ | DN such that ¢ = 3 mod 4. Moreover, since D is the
product of an even number of primes, (%p) =-1ifgq| D, and (%’) =1if ¢| N, it follows that

[Typn (%’) = 1. Putting this all together we have shown that if p =1 mod 4, then

_DN 1 DN =1mod4
e

-1 DN =3mod4
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We now prove the converse when 2 | N and m = DN. By Lemma 4.2.8(2), Bp, ~ B’ =

(‘”fQDN). Contained in B’ is the order Z ® Zi ® Zj & Zij of reduced discriminant 4DNp. If
p=3mod4 then Z & Z1+Z ®ZjeZ (M)j is an appropriate order of discriminant DNp, and
is thus an Eichler order of level N. If p=1mod 4 then Ze Zio Z (1””) ® Z( L. Z+ZJ) is an
appropriate order of discriminant DNp.

We now prove the converse when 2 | N and m = DN /2. By Lemma 4.2.8(2), Bp, = B’ =
(_p’_TDN/Q). Contained in B’ is the order Z& Zi®Zj ® Zij of reduced discriminant 2D Np. It
follows that the “Hurwitz quaternions” Ze Zi® Zj & Z (M) are an appropriate Eichler
order of discriminant DNp.

We now prove the converse when 2 | D and m = DN. By Lemma 4.2.8(3), Bp, = B’ =
(#). Contained in B’ is the order Z & Zi @ Zj & Z1j of reduced discriminant 4D Np. If
p =3 mod 8 then Z & Zﬁ ®Zjo7Z (ﬂ)j is an appropriate order of discriminant D/Np, and
is thus an Eichler order of level N. If p=5mod 8 then Z ® Zi ® Z (*2) @ Z (=44 is an
appropriate order of discriminant DNp.

We now prove the converse when 2 | D and m = DN /2. By Lemma 4.2.8(4), Bp, = B’ =
(%W). Contained in B’ is the order Z®Zi®Zj & Zij of reduced discriminant 2D Np. It
follows that ZeZi®Zj & Z (“”T]”J) are an appropriate Eichler order of discriminant D Np.

We now prove the converse when p = 2. By Lemma 4.2.8(5), Bp, = B’ = (%)
Contained in B’ is the order Ze&Zi®Zj®Z1j of reduced discriminant 4D Np. If DN =3 mod 8
then Z @ Zm eZioZ (lﬂ)z is an appropriate order of discriminant DNp, and is thus an
Eichler order of level N. If DN = 5 mod 8 then Z&ZjoZ (1”” )EBZ ( i ) is an appropriate

order of discriminant DNp.
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Chapter 5

A Moduli Problem

We wish here to construct a scheme X (N),s for any scheme S. Informally, we define it to
be the coarse moduli scheme for QM-abelian surfaces with I'g(V)-structure. A reader who
finds that definition sufficient and knows (even informally) how to define the Atkin-Lehner
involutions may skip the first two sections and proceed on to section 5.3.

Section 5.3 concerns abelian varieties which are in the literature referred to as superspecial.
These varieties will play a very important role in the remainder of this thesis. The reason is
that the action of Galois on these surfaces can be understood using the theorems of chapter
4.

In order to state these results, we will first record some basics on abelian surfaces. After
that, we record at length the different equivalent moduli problems which define the coarse
moduli scheme X (N);s. Then we will recall some results on the explicit forms of the
models of X (N )z,- Finally, after completing section 5.3, we will be able to prove the main
theorems of this thesis.

Throughout this chapter, we will assume by convention that D is a squarefree product

of an even number of primes and that N is squarefree and coprime to D.
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5.1 Basics on Abelian Surfaces

Definition 5.1.1. An abelian scheme A — S is a smooth, proper S-group scheme with
connected fibers. This map has an identity section, which we denote 0 : S — A. If all

geometric fibers of A — S have the same dimension d, we define dimg(A) :=d.

Definition 5.1.2. If A - S is an abelian scheme, and v: A - A is an S-morphism such
that v0 = 0, we say that v is an S-endomorphism of A. We denote the Z-algebra of S-
endomorphisms of A by Endg(A).

Definition 5.1.3. Let S be a scheme and let (A1,01), (As,02) be abelian schemes over S.
We say that ¢ is an isogeny if ¢ : Ay — Ay is a finite flat S-morphism such that ¢0; = 05. In

that case, ker(¢) := ¢*02(S) is a finite flat subgroup scheme of Aj.

Definition 5.1.4. Let o,z be the group scheme such that for all rings R, a,(R) = {z € R:
xP = 0}. If k[IF, is a field and Ay, is an abelian variety such that there is no embedding of

k-schemes ay, — A[p] then we say that A is ordinary.
Definition 5.1.5. An abelian surface A/g is a two-dimensional abelian scheme over S.

If Ajs is an abelian surface, s € S is a closed point and A, is an abelian variety over
k(s) then define Lie(A;) := Hom(Oa, 0, k(s)[e]/(e?)) |Liu02, Exercise 4.2.7|. Since Ay is
nonsingular, Endy)(Lie(Ay)) = My(k(s)). By the definition of an endomorphism of an
abelian scheme, there is a natural action of Endjs)(As) on Oy, . It follows that there is
a natural action of Endy)(A,) on Lie(Ay). Moreover, if k(s) has characteristic p, there
is a natural action of Endy)(As)/(p) on Lie(A;). Therefore, there is a homomorphism
¢ : Endy(s)(As)/(p) = Ma(k(s)).

Suppose that ¢ is a finite subfield of Endy)(As)/(p) and consider the image of ¢ in

Ms(k(s)). Since /¢ is separable over F,, the Jordan canonical form of any particular element
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of ¢(¢) has two Jordan blocks. Since ¢ is commutative, ¢(¢) is simultaneously diagonaliz-

able if k(s) is algebraically closed. It follows that if k(s) = k(s) then ¢ defines a pair of

homomorphisms ¢ — k(s).

Definition 5.1.6. Let Bp be the quaternion algebra over Q of discriminant D and let O be
a fized Eichler order of level N in Bp with (D,N) =1. An abelian O-surface (A;g,t) is an
abelian surface with an optimal embedding v : O - Endg(A). If O is clear from context, we

may refer to (A1) as a QM-abelian surface.

Note that if ¢ : O - Endg(A), then ¢ also induces O/NO < Endg(A)/N Endgs(A). This
is because if f,g€(O) and f-ge NEndg(A) then f—ge(NO).

Definition 5.1.7. A morphism of abelian O-surfaces f : (Asg,1) — (A;S,L’) is an S-
morphism f : A — A’ such that fu(-) = /(-)f. If the morphism f is an isogeny or iso-
morphism, we will say that f : (A1) - (A’,1) is an isogeny or isomorphism of abelian

O-surfaces.

Let O be an Eichler order of level N in Bp with (D, N) = 1. Recall by Lemma 4.1.15 that

if p| D, O/pO = F,2 @ Fj2m,. Further recall that if a € F 2, m, must be such that a?m, = mya

Definition 5.1.8. Let (Ajg,t) be an abelian O-surface and p | D. Thus F ¢ O[pO acts
on Lie(Ay) through . For all closed points s € S such that k(s) is algebraically closed of
characteristic p, let 05,75 : F2 - k(s) the distinct embeddings. Consider Lie(As) as a k(s)-
vector space and let Lie(A,)[¢] denote the subspace of Lie(A;) on which F2 ¢ O/pO acts
through ¢ : Fp2 > k(s). We say that (Ajg,t) is mixed if for all such s €S, both Lie(As)[os]

and Lie(A)[7s] are one-dimensional k(s)-vector spaces.
Remark 5.1.9. Notice that over Z[1]/D]-schemes, every abelian O-surface is mized.

Definition 5.1.10. Let A — S s an abelian scheme and At — S its dual abelian scheme

[FC90, Theorem 1.1.9]. If there exists a principal polarization I1: A > At [FC90, Definition
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1.1.6] then there is an involution on Endg(A) given by ¢ — ¢! = TI7 @1 called the Rosati

Involution associated to 1I.

Recall that if OF is a maximal order in Bp, then there exists some p € OF such that
12+ D =0 by Theorem 4.1.28. Denote by @ the main involution of Bp = OP ® Q applied to

« as in Definition 4.1.6.

Definition 5.1.11. Let (A;g,t) is an abelian OP-surface. Fix some pn € OP such that p>+D =

0. A p-polarization on (A, 1) is a principal polarization of A such that 1(a)’ = (u='au).

Lemma 5.1.12. Let OP be a mazimal order in Bp and let (A, 1) is a mized abelian OP -

surface over a scheme S. If € OP is such that u> + D =0, then A has a p-polarization.

Proof. Over Z[1/D], a unique p-polarization can be determined by a close examination of
(-divisible groups [Buz97, p.3|. Over Z, for p | D, a unique p-polarization may be determined
using formal groups [Dri76, Proposition 4.3|, [BC91, II1.3.5]. To descend from Z, to Z,),
we use faithfully flat descent, that is, Ilz, descends down to Z,) if and only if piII =
p3II where py,ps are the projections Spec(Z, ®z,, Zp) = Spec(Zy) Xspec(z,)) Spec(Zy,) —
Spec(Z,)[SGA03, Corollaire VIIL.1.2]. But then Z, ®z , Z, is a Z,-scheme so there is a
unique p-polarization using Drinfeld’s result. Finally, we may glue the p-polarizations over

Z[1/D] and Z,) to obtain a p-polarization over Z[p/D], and thus over Z. O

Remark 5.1.13. Although we shall only speak of the p-polarization above, there may be

other principal polarizations given to A, even some compatible in some way with v [Rot04).

5.2 Some Moduli Problems

We now list a few categories and functors of abelian surfaces. We will show that if two such

functors have the same discrete invariants and base schemes, they are isomorphic as functors.
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Moreover, they have coarse moduli spaces. These coarse moduli spaces will be what we will

call Shimura curves.

Definition 5.2.1. Suppose that (D,N) =1, O is an Fichler order of level N in Bp and S
is a scheme. Let T be an S-scheme and let C(N)(T) denote the category whose objects are
miazed abelian O-surfaces (A,1),r and whose morphisms f : (A, 1) = (A’,/)) are isomorphisms
[+ A= A" such that for all a € O, fu(a) = («)f. For all objects (A,v) of CP(N)(T') define
the equivalence class [(A,i)] to be such that [(A,0)] = [(A’,t")] if there is a morphism
[ A=A of CP(N)(T). Let FP(N)s denote the contravariant functor from the category of
S-schemes to the category of sets defined as follows. If T is an S-scheme, define FP(N)(T)

to be the set of all equivalence classes [(A, )] where (A,v) is an object of CP(N)(T).

Notice that FP(N)g is a functor because if ¢ : T'— T" is a morphism and (A,:) is an
object of CP(N)(T") then we can form the base change morphism b : A7 — A. Therefore,
consider the embedding b* : Endy(A) = Endr(Ar), which induces a map of sets ¢* :
CO(N)(T") = CP(N)(T) by (A,i) » (Ar,b*t). Note that b*.: O = Endr(Ar) is optimal.
If not, there is a larger order O’ > O and an embedding € : 0" - Endr(Ar) such that for
all v € O, €(y) = b*1(v). Recall now that O is the intersection of two maximal orders.
Since ' is an order which properly contains O, it must lie in exactly one of these maximal
orders, which we now call OP. Since [OP : O] = N, for all « € O’ ~ O, Na € O. Now since
b*t(Na) = e(Na) = e(a)[N]a,, the kernel of b*t(Na) contains the kernel of [N]4,.. Since b*
is an embedding, the kernel of :(N«) admits an embedding of the kernel of [N]4 and thus
¢ extends to an embedding O’ - Endz(A), in contradiction to the optimality of ¢.

In addition to defining this moduli functor, we will define a natural tranformation of
functors w, : FP(N)s - FP(N)g for all schemes S. Suppose that ¢ | DN is prime so that
there is a unique two-sided ideal Q of O of norm ¢ by Lemma 4.1.23. Since Bp, is indefinite, all
ideals are principal and thus there exists some 3, € O, unique up to multiplication by O* such

that Q = 5,0 = Of,. Suppose that O is an Eichler order of level N in Bp and S is a scheme.
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There is a self-bijection of FP(N)s(T) induced by Q as follows. Let wg : [(A4,)] = [(A, t5,)]
where 1 (2) = t(B8,) " e(x)e(B,). Notice that if v € O* then ¢(u) induces an O-equivariant
isomorphism between (A, «(-)) and (A, c(u)"'e(-)e(u)). Therefore [(A,t5,4)] = [(A4,¢5,)] and
thus wy[(A,¢)] depends only on ¢. Notice also that if s € S is a closed point such that k(s)
is an algebraically closed field of characteristic p | D then either p # ¢ and conjugating by
t(B,) preserves Lie(A;)[os] and Lie(A;)[7s], or p = ¢ and conjugating by ¢(5,) interchanges
them by Lemma 4.1.15.

Now consider that the following diagram commutes:

FPN)(T") —=FP(N)(T")

|+ o

F§ (NUT) —= FZ (N )(T),
so w, defines a natural transformation FP(N)s — FP(N)s. To see the diagram com-

mutes, note first that [(Az, b*(15,(-)))] = ¢*[(A,5,)] = 0*wy[(A,¢)]. For all a e O,

b* (1(Bg) " e(@)e(Bg)) = (b 1(Bg)) 0" 1()b"1(By),

because b* is a homomorphism. Since [(Ar, (b*t)g,)] = wa[(Ar,b71)] = wed*[(A, )], we
see that for all elements of FP(N)(T"), ¢*wy[(4,1)] = w,0*[(A,¢)].

Definition 5.2.2. For all m | DN we define an automorphism wy, : FP(N)s - FP(N)s as
the composition of w, for all g | m prime. We will call w,, the m-th Atkin-Lehner involution.

Define the set W of all such w,, to be the Atkin-Lehner group.

Note that by Lemma 4.1.23, the two-sided ideals form an abelian group, so the above

definition of w,, makes sense.

Definition 5.2.3. We say that (A,1) is fized by w,, if [(A,0)] = [(A,es,,)], where By, is a

generator of the unique integral two-sided ideal of O of norm m.
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Equivalently, (A,¢) is wy,-fixed if for all « € O, t(Bn) " e(@)e(By) = t(«). This is to say
that ¢(8,,) lies in the commutant of +(O) in Endr(A). Let M be the two-sided ideal of O
of norm m. Thus ¢(M) is the unique integral two-sided ideal of norm m in ¢(Q). Since
Bm generates M if and only if ¢(5,,) generates t(M), (A,¢) is wy,-fixed if and only if the

commutant of ((Q) in Endy(A) contains a generator of t(M).

Definition 5.2.4. Suppose that OP is a maximal order in Bp, € OP such that > + D =
0, S is a scheme and T is an S-scheme. Let CD(N)(T) the category whose objects are
isogenies of mized abelian OP-surfaces ¢ = (Ajr, 1) - (A;T,L’) such that ¢'¢ = [N]a where

()7 is the Rosati involution associated to the unique p-polarization on A. The morphisms
(65 (A,0) > (A1) > (6 : (B,e) » (B'e")) are pairs of isomorphisms [ : A > B, g
A" - B’ such that for all o € OP, fu(a) = e(a)f, gi'(a) = €(a)g and gp = ¢ f. For all
objects ¢ : (Ayr, 1) = (Ajp, ') of FP(N)(T) let [¢] denote the equivalence class such that
[¢] = [¢] if there is a morphism (f,g) of CP(N)(T') such that g =+ f. Let FP(N)s denote
the contravariant functor from the category of S-schemes to the category of sets defined as

follows. To an S-scheme T, we associate the set of all equivalence classes [¢] with ¢ an

object of CR(N)(T).

Note that P (NV)g is a functor because isogenies pull back along morphisms of schemes.
That is, fix a principal polarization of A and let ¢ : A - A’ be an isogeny of T"-schemes such
that ¢t¢ = [N]4. If T - T" is a morphism of schemes and b : Ar - A is the base change
morphism, then let ¢ : Ap - A, be the base change of ¢ along b. Likewise let quT be the
base change of ¢f. Since bqﬁTTqﬁT = pTpb = [N]ab=0b[N]a,, ¢TT¢T = [N]a,-

Definition 5.2.5. Suppose that OP is a mazimal order in Bp, (D,N) =1, and S is a
scheme. Let T be an S-scheme and let C}(N)(T) denote the category whose objects are
triples (A, v, K);r where (A, 1) is a mizved abelian OP -surface and K is a closed OP -invariant

subgroup scheme of A[N] of order N%. The morphisms (A1, K) - (A’,J/, K') are isomor-
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phisms f : A - A" such that fu(:) = J/(-)f and f(K) = K'. For all objects (A,1,K) of
CR(N)(T), let [(A,t, K)] denote the equivalence class such that [(A, i, K)] = [(A",/,K")]
if there is a morphism f: (A 1, K) — (A',//, K') which is a morphism of CJ(N)(T). Let
FPD(N)s denote the contravariant functor from the category of S-schemes to the category

of sets defined as follows. To an S-scheme T we associate the set of all equivalence classes

[(A,¢,K)] where (A, 1, K) is an object of CE(N)(T).

Note for the following definition that if ¢ : OP < Endg(A), ¢ induces an embedding
[(/N]:OP ® Z/NZ - Ends(A) ® Z/NZ.
Definition 5.2.6. Suppose that OP is a mazimal order in Bp, (D,N) =1, and S is a

scheme. Let T be an S-scheme. For any fized isomorphism v : My(Z/NZ) - OP @ Z|/N'Z,

10
let e = 1 . With this data, define a category C¥(T) whose objects are triples
0 0

(A, v, K)r where (A1) is a mized abelian OP-scheme and K is a closed subgroup scheme
of ker([¢/N](e)) which is locally free of rank N. The morphisms (A i, K) — (A’,J/, K") are
isomorphisms f: A - A’ such that fu(-) =/(-)f and f(K) = K'. Let [(A,¢,K)], denote
the equivalence class of objects of C¥(T') such that [(A, ¢, K)]y = [(A", V', K")]y if there is a
morphism f: (A, K) - (A", K") of C¥(T). Let }"g be the contravariant functor from the
category of S-schemes to the category of sets defined as follows. To an S-scheme T associate

the set of all equivalence classes [(A, 1, K)]y, with (A,t, K) an object of C¥(T).

We note that these are functors because the rank of a finite group scheme is preserved
under base change. We also note that for all T there is a natural “forgetful” functor
CR(N)(T) - CR(1)(T) sending an object (A, ¢, K) to (A,:,{04} and a morphism f to
itself.

Lemma 5.2.7. The categories C?(N)(T), CY(N)(T) and C¥(T') are equivalent for all maa-
imal orders OP for all u such that p?>+ D =0, for all : My(Z/NZ) - OP @ Z/NZ and for

all schemes S.
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Proof. Since N is square-free, it is equivalent to give a closed subgroup with is locally free
of rank N and to give closed subgroups which are locally free of rank p for all p | N. That is,
if K is such a subgroup, take ker([p]a : K - K) for all p| N and if {K,},n is a collection
of such subgroups, take their product. Recall that if N is prime there is a bijection between
the objects of CP(N)(T'), CL(N)(T) and C¥(T) [Buz97, pp. 8-9] and by the decomposition
of K into groups of prime order, this bijection extends to all squarefree V.

Note that a morphism of CI'(N)(T') is a morphism of C¥(T') and vice versa. If (A, ¢, K)

01
is an object of C¥(T") and ¢ = ¢ , then let K’ =tK. It follows that an OP-equivariant
10

isomorphism f: A — B fixes K if and only if f fixes K x K.

If ¢: (A1) = (A1) and o : (B,e) - (B',¢') are objects of CP(N)(T) and (f: (4,¢) -
(B,e),g + (A,v') - (B',€¢')) is a morphism of CP2(N)(T') then f is OP-equivariant and
f(ker¢) = kertp. Therefore f is a morphism of CJ(N)(T). Conversely if f : (A4,,,K) —
(B,¢e,C) is a morphism of CJ(N)(T') and g : A/K - B/C induced by f then (f,g) is a
morphism of CP(N)(T). O

Note also that by the proof above, especially the argument on subgroup schemes of
prime or prime-power order, for all primes p | N, we have a pair of natural transformations
of functors FP(N)s = FF (N /p)sxzp 1), Ff (P)s = F§ (N)s which compose to the identity.
We may thus use the forgetful functor C2(p)(T") —» CE(1)(T') to define a “forgetful” natural

transformation F7(N)s - FE(N/p)s.

Lemma 5.2.8. If S is a scheme then there are a pair of natural tranformations FP(N)g —

FP(N)s > FP(N)s which compose to the identity.

Proof. We first note that considering these two functors, we are taking a choice of a maximal
order OP and a level N Eichler order O, which we may take to be contained in OP. To give

an isomorphism, pick a generator Sy of the unique two-sided ideal of norm N in O. The
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interested reader is encouraged to notice the similarities to the approach of Molina|Mol10,
Appendix]. This naturally determines a unit u such that 8% = Nu or rather that Syfyu~! =
N. This also realizes O = OP n 5t OP By with index N in each. It follows that the unique
two-sided O-ideal of norm N is SyO = SyOP n OP By and the index of SyO in each is N,
and moreover that both SyOP and OP By have index N in @. Finally note that since u is
a unit of @, it is a unit of OF and so Byu~1OP = ByOP.

Let T be an S-scheme and let (A,¢) be an abelian O-surface. Define abelian surfaces
Ay = Al kerrer((sy)) (L(OPBN)), Ay = Al kerier(syu-y) (L(ByutOP)) and let p, p’ be the
respective reduction morphisms.

Notice that we have taken A} to be isomorphic to A/ kerker(LBNo(BNu-l))(LﬁNo(ODBN))
under the definition of ¢, in Definition 5.2.2. We may take n: Ay - A, ' : Aj - A such

that np=¢(Bn), n'p’ = «(Brnut). If we define ¢ := p'n and ¢}, := pn’ then

ndodo = L(Bn)e(Bnu)n = [N]an = n[N]a,

80 ¢)Po = [N]4,- In summary, the following diagram commutes.

n n n
A L(Bnut) A t(BN) A

Since we have shown that the Atkin-Lehner involution wpy interchanges ¢, and ¢y,
# ker(¢o) = # ker(¢p) = N2.

Now consider that Syu=tOP c O, so that ¢«(Byu~ta) € Endr(A). In fact, ker(¢(Syut)) c
ker(¢(Byu~ta)), so pu(Byuta)n e NEndr(Ag). Note also that for all a,y € OP,
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Therefore we define ¢y : OP < Endp(Ag) by to(a) = pL(ﬁNu ta)n. Therefore,
given an object (4,¢) of CP(N)(T), we associate the object (Ao, vo, ker(¢p)) of CR(N)(T).
Suppose that (B, €) is an object of CP(N)(T') and as we obtained (p, p’,n,n") from (A, ),
let us obtain (¢,0’,(,(’) from (B,€). To a morphism f: (A,.) - (B,e) of CP(N)(T), we
associate the morphism %afn’gzﬁo : (Ao, to) = (Bo, €9) of CE(N)(T). We have thus defined
a functor CP(N)(T) - CR(N)(T).

Now suppose that T is an S-scheme, (Ag, o) is an abelian OP-surface and K a closed
subgroup of Ay, locally free of rank N?2. Consider the closed subgroup scheme K nker (o(S8y),
define A := Ag/(K nkeri(fBy)) and let n: Ag - A be the reduction map. Let also p: A >

Ao/Knkero(Bn) A ~ o .
ker(m(ﬁ?\r))/(;mﬁer&(&v))) ety £ Ao Additionally define ¢ : Ao/(K nkeriu(By)) —
Ao/(Kokeri(Bx)) _  Note that AO/(KOke“(BN)) ~ ~ Ay. Note that since SyO = OB,

Ao[N]/(Knker(Bn)) Ao[N]/(Knker«(Bn)) = Ao [ 1=

to(O) ker(1o(Bn)) c ker(eo(Bn)) and therefore ¢ induces an embedding ¢ : O = Endr(A).

More precisely, for all a € O, define t(a) = mo(a)%p Moreover, this embed-
ding ¢ is optimal because the set of o € OP such that () ker(eo(Bn)) c ker(eo(Bn)) is
the set of a € OP such that fya € OPfFy. This is to say that o € OP n 50PN =
O and therefore O is the largest order L in Bp such that ¢y can induce an embedding
L < Endr(A). Therefore to an object (Ao, o, K) of CF(N)(T) we associate the object
(Ao/ (K nker(eo(Bn))). ;0o () d5p") of CP(N)(T).

Suppose now that (Bo,eo, () is another object of CY(N)(T'), and as we have obtained

(A67¢07¢6u77707:0’) from (A07L0)K)7 let us obtain (3671/}071/}(,)74-70-7 OJ) from (B07607O)' Sup_
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pose further that fy : (Ao, to, K') = (Bo, €9, C') is amorphism in ;' (N)(T'). Then we associate
to fo the morphism ﬁ(fogb(’)p of CP(N).
Note therefore that if (A, L) is an object of CF(N)(T), the object of CP(N)(T') associated

t0 (A/kerker(u(an)) (LOPBN))s - pe(Bnut)n, ker(p'n)) is

A
kerker(L(ﬂN))(L(O BN)) 1

(ker(p'n)nker(4— [N pL(ﬁNu 18nOm)) [N]A " [N]Ao
keryer(, (BN))(L(ODBN))

pu(Byu "t )nghp”

Note first that po(Byu=tBn)n = pn'p'npn = [N]a,pn. Therefore

A
keTyer(, (BN)>( 1(OPBN)) ~ A ~ A

(ker(p'm)nker( ey pe(Byu" By )n)) ker(p’n) nker(pn) ker(p ) Nnker(p)
keryer(, (ﬁN))( L(OPBN))

112
=

because ker(p’) nker(p) = 0.
Note now that n¢6p’ = [N]a so that [Nl]Afr] pL(ﬂNu ngip' = 77[ pL(ﬁNu ) =
o (B )e() = (B Bnvut)e() = o(:).
Note also that the functor CP(N)(T") —» CP(N)(T) takes a morphism f to

1

! -1
[N]BC([N]BO e(BnBru™)f = f.

e(Bn) ' o' (ndop’) =

/ I 1
afn ¢0)¢op ——[NQ]B (N ]

]

Remark 5.2.9. It may be interesting to produce a proof of the above using Serre’s tensor

product construction.

Recall now that if Ag is an abelian scheme and ¢ : OP < Endg(A) then there is a natural
left action of OP on A[n] for any positive integer n. Similarly, there is a natural left action of
OP on OP®Z/nZ. Note also that since OF = Z* as an additive group, OP®Z/nZ = (Z/nZ)*

as an additive group. Therefore if we denote by (OP ® Z/nZ)s the constant group scheme
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over S with the natural left action of O, the following definition makes sense.

Definition 5.2.10. Let OP be a mazimal order in Bp, S a scheme and (Ayg,t) an abelian
OP-surface. Let n be an integer coprime to D. A full level n structure on an abelian OP-
surface is an isomorphism of group schemes v: (OP ® Z|nZ)s > A[n] commuting with the

action of each as a left OP-module.

Lemma 5.2.11. Suppose that S is a Z[1/n]-scheme and (D,n) = 1. Fiz an isomorphism

10
W My(Z[nZ)s — (OP @ Z/nZ)s and let e =) . It is equivalent to give a full level

0 0

n structure to a QM abelian surface (A1) and to gie an isomorphism ker(e) = (Z/nZ)%.

Proof. Let v be a full level n structure on (A,1). Set t = 9 , which induces an
10

isomorphism between ker(e) and ker(1 —e). Since for any idempotent we have an exact

sequence

0 - ker(e) - A[n] > eA[n] -0

with a splitting given by 1 - e, we have ker(e) = (1 -e)A[n] = (Z/nZ)%.

Conversely, suppose we have an isomorphism ker(e) = (Z/nZ)%. We still have ker(e) =
(1-e)A[n] by splitting the exact sequence above and since ker(e) = ker(1 —e) we can pick
Py, P, € eA[n] mapping to (1,0), (0,1) under our isomorphism eA[n] = ker(1 -e) = ker(e) =
(Z/nZ)%. Note that since there exist P, Py € A[n] such that P, = eP so eP;, = 2P/ =
eP! = P;. Note also that P; = tP, and Py = tP; realize (1 -e)A[n] = ker(e) = (Z/nZ)% and
similarly (1 — e)Pay; = tet?eP! = te?P] = teP! = tP, = P5,;. Under ¢, {e,et,te, tet} forms

the standard (Z/nZ)s generating set of My(Z/nZ)s by elementary matrices. Therefore,

a b

identifying aP; + bP, + ¢P3 + dP, with determines a left OP-linear isomorphism
c d

between A[n] and My(Z/nZ)s = (OP @ Z/nZ)s. O
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Theorem 5.2.12 (Cerednik-Drinfeld). Let n > 3 be an integer and D > 1. Consider the
functor FP(n) sending a Z[1/n]-scheme S to the set of all (A;s,t,v) up to S-isomorphism
where (Ays,t) is a mized abelian Op-surface and v is a full level n structure on (A, ). The

functor FP(n) is representable by a projective Z[1/n]-scheme which we denote XP(n).
Proof. This theorem is [Dri76, Proposition 4.4]. O

It is well-known that F'(n) is not represented by a proper scheme, but there is a natural

compactification of the scheme which represents F'(n) which has been well-studied.

Theorem 5.2.13. Letn > 3 and let O be a mazimal order in By 2 My(Q). Let F'(n) denote
the contravariant functor from the category of schemes to the category of sets as follows. To
a scheme S, associate the set of S-isomorphism classes of (A,t,v) where v is a full level n
structure and A is either an abelian O-surface or the square of a Néron n-gon in the sense
of [DR73, I1.3.1]. Then F'(n) is representable by a smooth, projective Z[1/n]-scheme which

we denote X1(n).

Note that in the setting of elliptic curves, it is more common to refer to X(n) as X (n)

[Si192, p.354].

Proof. We first note that F'(n) is naturally a subfunctor of F’/(n). If we can show that
F1(n) actually sends T to the set of T-isomorphism classes of elliptic curves with level n
structures, we are done [DR73, Corollaire IV.2.9] because by Lemma 5.2.11 we are using
the same definition of a level structure as Deligne and Rapoport. Since D =1, O! contains

nontrivial idempotents e. A nontrivial idempotent in O = My(Z) gives a decomposition of

A as E? with E 2 ker(e) 2 ker(1 —e) an elliptic curve. O

Corollary 5.2.14. Let n > 3 a multiple of N coprime to D such that (N,n/N) =1. Let S
be a flat Z[1/n]-scheme and T an S-scheme. Let O be an Eichler order of level N in Bp

and OP a mazimal order containing O. We may define an action of ge ' = (O®Z[nZ)* on
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XP(n) by (Ajp,0: OP = Endyp(A),v) = (Ajr,t,vg) since OP > O. The quotient XP(n)/T

is a coarse moduli scheme for FP(N)s.

Proof. First, we may assume D > 1 [DR73, Proposition 1V.3.10].

To obtain a coarse moduli space, we must have a stack. We shall show that over Z[1/n],
the quotient functor FP(n)/I" agrees with FP(N). The quotient functor is represented by
a stack in the étale topology on S, in fact the Deligne-Mumford quotient stack [ X P (n)/T']
since the constant group scheme I" is étale [LMBO0O, 4.6.1]. The result follows [DR73, 1.8.2.2]
once we show that FP(N) is the appropriate quotient functor. The following is essentially
an expansion of Buzzard’s Lemma 4.4 [Buz97].

Let T be an S-scheme and (A4, ¢, [v]r) an object of FP(n)/T'(T"). Since I' is étale, there
is, after an étale base extension T’ — T, a full level structure v on Ar.. Since finite étale
maps are fpqc, and there is an equivalence of categories between quasi-coherent T-modules
and quasi-coherent T’-modules with descent data [BLR90, Theorem 6.4], there is no harm in
working with (Azr,¢: O < Endp(A) < Endy (A7), v) and descent data given by the action
of T.

To fix ideas, fix an isomorphism ¢ : My(Z/NZ) -~ OP ® Z/NZ and O = OP(N). Define
OP(N) to be the set of elements of OF which become upper-triangular in OP ® Z/NZ via
Y. By Theorem 4.1.21, O is conjugate to OF (N), so without loss of generality we assume
O = OP(N). Since n = Nd with (d,N) =1, OP®Z/nZ 2= OP @ Z/NZ & OP ® Z/dZ as
left OP-modules. Consider the element of FP(N)(T") given by (A,¢,v(M)) with M =

*

®{0} cOPQZ/NZoOP ®Z/dZ. Observe that the subgroup M is invariant under
0 =

the (right multiplication) action of (O ® Z/nZ)*, so the triple (A,¢,v(M)) descends down
to T.
Conversely, we know that since we are working over a Z[1/n]-scheme, after an étale

extension S’ — S, there is an isomorphism A[n] = (Z/nZ)4,. Let e be an idempotent of
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OP ® Z/nZ. Since ker(e) = ker(1 -e) and A[n] = ker(e) x ker(1 - e), ker(e) = (Z/nZ)2 and
therefore by Lemma 5.2.11, there is a level n structure v. This level structure is not unique,
but the choice of any two level structures v, determines an isomorphism g : My (Z/nZ) —
My(Z/nZ) such that v’ = vg. Note here that the automorphisms of My(Z/nZ) are exactly
GL2(Z/nZ).

Suppose now that K is a subgroup of ker(e) which is locally free of rank N and K’ is
its isomorphic image in ker(1 —e). Make an étale base extension 7" — T so that there exist
isomorphisms ker(e) = (Z/nZ)%, = (Z/NZ)3, x (Z/dZ)3, and thus ¢ : Z/NZy - K and
V' Z|NZg — K'. Let Py=1(1) and P, =v'(1) as in the proof of Lemma 5.2.11, and let v
be a level structure extending these. The choice of v fixing K x K’ is not unique, but all others

are given by the right multiples by a subgroup of GLy(Z/nZ) 2 GLy(Z/NZ) & GLo(Z/dZ).

*

0
In particular, as we have identified K x K’ with the subgroup ®{0} of My(Z/NZ)o
0 =

My(Z/dZ), K x K’ is fixed under right multiplication by g € GLy(Z/nZ) if and only if g is
upper-triangular modulo N. Therefore we map (A, ¢, K x K') to (Ag,t,v). Moreover we

may choose T" — T with descent data given by right multiplication by I', inducing a map
fOD(N)(T) - fD(n)/F(T) by (A/Ta LaK x K/) = (A/T7 L, [I/]F)- [l

Remark 5.2.15. Note that this definition is independent of the choice of n used in Corollary

5.2.14, so XP(N)s may be defined for any scheme S over Z[1/N].
Definition 5.2.16. Let X(?(N)/S be the coarse moduli scheme given in Corollary 5.2.14.

Note that by the definition of a coarse moduli space [DR73, Definition 1.8.1], if k = k and

S is the coarse moduli space for a functor F, then F(k) is in natural bijection with S(k).

Definition 5.2.17. If an abelian O-surface (A,1) over k has a certain property (e.qg., being
Wy, -fized or superspecial in the sense of Definition 5.3.6) then we may also say that the point

x: Spec(k) > XP(N) corresponding to (A, i) has that property.
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We now state some theorems on explicit descriptions of X’(NN)g over various schemes

S.
Theorem 5.2.18. If S is a flat Z[1/DN]-scheme, then X (N);s is smooth.

Proof. This is generally attributed to Y. Morita in his Master’s Thesis [Mor70|. Milne shows
that X (1)zppy is smooth [Mil79, p.172]. Over Z[1/DN], the map X (N) - XP(1) is

étale and therefore XP(NN) is smooth over Z[1/DN]. O

Definition 5.2.19. Let D, N be positive square-free integers and let O be an Fichler order

of level N in Bp. Define Pic(D,N) to be the set of isomorphism classes of right O-ideals.

Lemma 4.1.21 shows that Pic(D, N) = {[O]} when Bp is indefinite. When By, is definite,

there exist formulas for the size of Pic(D, N) [Piz76, Theorem 16].
Definition 5.2.20. For [I] in Pic(D, N), the length is £([I]) := #(O,(1)*] £ 1).
We shall use the length to make sense of the reduction X§’(N)g, when p|D.

Definition 5.2.21. We say a normal, proper, flat relative curve Mz, is a Mumford curve
if each component of the special fiber is isomorphic over IF,, to Pﬂ;p and the intersection points

are all Fp,-rational double points.

Theorem 5.2.22. Letp| D. There is a Mumford curve M(p ny/z, whose components over I,
are in bijection with two copies of Pic(D/p, N) interchanged by an involution a, of Mp ny,
whose intersection points are in bijection with Pic(D/p, Np), and whose dual graph is bipar-

tite. Moreover let = be an intersection point between two components of (Mp ny)r, corre-

sponding to [I] € Pic(D/p, Np). Then the following holds:

Oty 2 Zp[[X, Y]]/ (XY = p"UD),
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Most importantly, there is an isomorphism ¢ : X(?(N)sz > (M(p,n))z,, such that
dwy = apg. If (o) = Auty, (Z,2), this isomorphism realizes X (N )z, as the étale quotient of

(M(D,N))ng by the action of oa,.

Proof. Although this was first done in the case N = 1 by Kurihara [Kur79, §5], a proof
for general level can be found in many places [Ogg85, p.201-202],[Cla03, Corollary 78|. In
particular, the relation between Mp ny and X (N)z, can be deduced as follows. In the
notation of Clark [Cla03, p.54], M(p n) may be defined as I',\P. In the notation of Ogg
[Ogg85, p.201], the dual graph of (M(p n))r, may be explicitly given as A/I",. Also in Ogg’s
notation, Vertices(A/I") = Vertices(A)/T" is in natural bijection with Pic(D/p, N) and the
directed edges of A/T" are in bijection with Pic(D/p, Np) where I'/T'; is generated by a,.

Finally we note that for all I, ¢([I]) may be realized as a certain stabilizer in T O

Remark 5.2.23. Thinking of the dual graph in this way yields an algorithm to compute dual
graphs which the author has implemented in MAGMA[ BCP97]. If we fix O o OP, it is possible
to effectively compute representatives {Iy,...,1,} for Pic(OP) and {J1,...,Jy} for Pic(O).
Under the reduction map ATy - AJI' the origin of J; is the unique I; such that J;OP = I,.
Also, via the PrimeIdeal command, we may compute the unique two-sided integral ideal p of
O. Therefore we may compute wy[J;] = [Jjp] in the style of Theorem 5.58.14. The terminus

of J; is then the origin of [ Jp].

For a ring A of characteristic p, let W(A) denote the Witt vectors of A [Ser79, §IL.6].

Recall that N is always assumed to be square-free.

Theorem 5.2.24. Fix a mazimal order OP in Bp, a square root jn of =D in OP | and let p |
N. Let S = Spec(R) be a flat Zy,)-scheme and consider F?(N) to be the functor of Definition
5.2.4. Then for all p, FP(N) admits a coarse moduli scheme X (N);s. If T is an F,-scheme
then there is a closed embedding c: Xg’(N[p)r - X§(N)r. Moreover if T is an S-scheme
and if &5 XP(N )z = XP(Np)r is the forgetful map XP(N) = XP(N/p) xxpcy X9 (0)
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XP(N/p), then ®c is the identity and Pw,c is the Frobenius map (A,i) — (A®) Frob,, t)

see Definition 6.0.3). Moreover, T Jits into the following diagram
D ition 6.0.3). M, XP(N ) he following di

X(?(N/p)T\\ XP(N/p)r
id XP(N)r id
XP(N/p)r X§(N/p)r

Ift is a closed point of T such that k(t) = k(t), the intersection of c(XP(N/p)(k(t))) and
wpc(XP(N[p)(k(t))) is precisely the set of superspecial points (in the sense of Definition
5.8.6), which are in bijection with Pic(Dp, N /p). Moreover, for each superspecial point x over

t corresponding to [I] € Pic(Dp, N|p), the strictly henselian complete local ring of XP(N)
at z is isomorphic to R® W (F,)[[X,Y]]/(XY - p«UD).

Proof. The bijection between superspecial points and Pic(Dp, N/p) is Theorem 5.3.10. The
actual result is Theorem 1.7.2 of David Helm’s PhD thesis [Hel03] and was later published
[Hel07, Theorem 10.3]. To recognize this more easily, note that Helm’s embedding Frob is ¢

here and Helm’s embedding Ver is w,c. [

Lemma 5.2.25. The components and singular points of the Fp special fiber can be put into

the following W -equivariant bijections.

Components Intersection Points

p| D | Pic(D/p, N) I Pic(D/p,N) Pic(D/p, Np)

p| N | Pie(D, N/p) LPic(D, Nfp) | Pie(Dp. N/p)
Moreover, if p | D, the bijection of a set of components with Pic(D/[p, N) is W [{w,)-

equivariant with w, interchanging each. If p + DN, the superspecial points of XP(N )Fp
can be put into W -equivariant bijection with Pic(Dp, N') via the embedding c : X(?(N)Fp -
XP(Np)g,.
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Proof. This is a summary of a part of Theorem 1.1 in [Moll0]. For p | D this lemma
may be deduced from Theorem 5.3 of [Rib89], which gives a natural bijection between the
components and intersection points and certain types of superspecial surfaces. For p | N,

this may be deduced from Theorem 1.7.2 in [Hel03]. O

Let S be an irreducible, faithfully flat Z,-scheme and let 1 be its generic point. Since
XP(N)/s may have quotient singularities, it may not be a regular scheme. For this reason,
we reserve the word model for a regular proper scheme X;g whose generic fiber is X (N),,.
We may obtain such a scheme by resolving the singularities on X(N) [Liu02, Example

8.3.50].

5.3 Superspecial surfaces

Fix a prime number p and a maximal order S in the quaternion algebra B, over Q ramified
precisely at p and oo. By a theorem of Deuring, there is a supersingular elliptic curve E over

the algebraic closure F of I, such that Endp(E) 2 S [Rib89, p.23|.

Definition 5.3.1. Fiz Ejr, a supersingular elliptic curve with Endg(E) = S. We say that

an abelian variety A is supersingular when there is an isogeny A — Edim(4)

Note that if F} is supersingular then E is isogenous to E’ so the above definition does

not depend on the choice of E.

Theorem 5.3.2. [Cla03, Appendiz[If A is an abelian surface defined over F,, then the only

possibilities for End]%q(A) are the following.
1. A quartic CM field.

2. A quaternion algebra over an imaginary quadratic number field K in which p splits.

The discriminant of this quaternion algebra is pZ = p1ps.
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3. A product of distinct imaginary quadratic fields Ky x K.

4. The product B, x K with K an imaginary quadratic number field.
5. Ms(K) where K is an imaginary quadratic field.

6. The matriz algebra My(B,).

Correspondingly, an abelian surface over I, is isogenous over IF, to one of the following.

1. An ordinary simple abelian surface Ag, (whose endomorphism algebra is an order in a

CM quartic field).

NS

. A simple abelian surface over Ap, with K-quaternionic multiplication.

o

. A product of non-isogenous ordinary elliptic curves (Ey)r, and (Es2)g,.

E

. The product of an ordinary elliptic curve qu with a supersingular elliptic curve Eﬁq.

“

The square of an ordinary elliptic curve qu.

S

The square of a supersingular elliptic curve qu.

Let O be an Eichler order of level N in Bp. If A came equipped with some ¢ : O —
Endr, (A) and thus we had an embedding Bp - End%q(A). If (Ay)r,,(A2)r, are two non-
isogenous abelian varieties, then End]%q(Al x Ag) 2 End](F)q (Ay) @End%q(AQ) so we can rule out

Theorem 5.3.2(3-4) because simple algebras must map into simple algebras and Bp # B,,.

Lemma 5.3.3. If K is an imaginary quadratic field and B s a quaternion algebra, the

following are equivalent.
1. There exists an embedding K — B.

2. There exists an isomorphism B ®q K = My(K).
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3. There exists an embedding B — My(K).

Proof. (1) = (2) = (3) is obvious. If there exists an embedding B < My(K) then there

exists an embedding B ®q K < My(K) ®q K. Note that
My(K)®q K = My(Q) ®q K ®q K = My(Q) ®q (K @ K) = My(K) @ My(K).

If K does not embed into B then B®q K is a division algebra, because if K = Q(\/E) then K
does not embed into B if and only if X2?-d is irreducible over B and Beq K = B[ X ]/(X?-d).
Since B ®q K is also a simple algebra it must also be an 8-dimensional sub-algebra of the
16-dimensional algebra My (K) @ My(K). Thus B®q K must be a sub-algebra of one of the
copies of My(K'). This is impossible since My(K') that has zero-divisors and B ®q K does

not. O

Let E be as in Definition 5.3.1. Note that End’(E) = B,. Is it possible that there exists

an embedding Bp < My(B,)? Consider the following:

Lemma 5.3.4. We have an isomorphism of Q-algebras Bp ® Bp, = My(B,) if p + D and
Bp® BD/p = MQ(BP) ’pr | D.

Proof. This is a simple Brauer group calculation. We know Bp ® Bp, (or Bp ® BD/p) is a
central simple algebra over Q of dimension 16 ramified precisely at p and oo, that is M,,(B,)

such that 4n? = 16. O

Corollary 5.3.5. If Ap, is an abelian surface and Bp - End%q(A), A is isogenous over
F, to the square of an elliptic curve (Eo)gr,. Moreover if p | D this elliptic curve must be

supersingular.

Proof. We have established that Theorem 5.3.2(5-6) can occur and Theorem 5.3.2(3-4) can-

not, hence it suffices to eliminate (1-2). A abelian surface as in Theorem 5.3.2(1) cannot
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admit such an embedding since Bp is non-commutative, so we need only ask if Bp can be
mapped into the K-quaternion algebra H,

1p2-

If there exists an embedding Bp < H,,,,, tensoring with K gives Bp®q K — H;'ﬁz. Since
simple algebras must map to simple algebras, we must have Bp ®q K = H,,,, by equality of
dimension. If p + D this is false since M(K') is not a division algebra. If p | D, there exists
some ¢ | D such that ¢ # p since Bp is indefinite. Pick a prime q lying above ¢. It follows

that Bp ® K, is a division algebra over K while H, ,, ® K, is not. Hence we have established

1p2
the existence of an elliptic curve E” such that A ~5 (£')*.

Finally the last assertion of this corollary is well-known [Rib89, Lemma 4.1]. O

Definition 5.3.6. We say that an abelian surface Ajr is superspecial if A = E; x E; with

E;, E; supersingular elliptic curves over IF.

Lemma 5.3.7. [Rib89, p. 21-22] Suppose that A is a supersingular abelian O-surface over

F with p+ D. Then A is superspecial.

Note that if A is supersingular, it need not be superspecial. When A is ordinary, we have

the following.

Theorem 5.3.8. If (A, 1) is an ordinary QM-abelian surface over a finite field k, then there
exist ordinary elliptic curves Ey, Ej over k such that A = Ey x E|. Moreover if m > 1 then
(A1) is wy,-fized (see Definition 5.2.3) if and only if Endy(Ey) = Endg(E)). Moreover,
Endy(Ey) must be isomorphic to one of Z[\/-m] or Z[@]

Proof. The first part of the statement is part of a more general theorem of Kani [Kanll,
Theorem 2|, who calls ordinary elliptic curves CM. For the second part, note that (A/g,¢) is
wp,-fixed if and only if R = Z[\/=m] (or Z[{4] if m = 2) embeds into the commutant of ¢(O)
in Endg(A).

Let k be a finite field, A, be ordinary, and (A4,t¢) be wy,-fixed. Also let W (k) denote

the Witt vectors of k [Ser79, §I1.6], which in this case are just a finite étale extension of
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p- Then there is a canonical choice of an abelian scheme Ay () with an isomorphism
f:Endy(A) > Endyx)(A) [Mes72, Theorem V.3.3|. Therefore the Serre-Tate canonical lift
(A, for) is a QM-abelian surface. Therefore so is Ac (the choice of embedding W (k) - C
does not matter [Del69, 7.Théoréme]), and there is an embedding of R into Endy(,(0y)(Ac).
Then we may find both an optimal embedding ¢ : R’ < O for some imaginary quadratic
order R’ 5 R and an isomorphism A¢ ¢ E; x Ey where the E;’s have CM by R’ and f o is
given by ¢ [Moll0, p. 6].

Now let K := W (k) ®Q, which must therefore be a finite unramified extension of Q,. We
can then show that Ax = E] x E} where E! ® C = E; [Kanll, Lemma 60]. Moreover, each
E! has CM by R’ since O = Endg(Ak) and we have ¢ : R’ = O. Now, if V' is an abelian
variety over K, let NM (V') denote its Néron model over W (k) [BLR90, Definition 1.2.1]. It

follows that since A is an abelian scheme, it is the Néron model of its generic fiber [BLR90,

Proposition 1.2.8], and thus

Az NM(Ax) 2 NM(E, x E}) = NM(EL) x NM(E).

Therefore Ay, = NM(E]) x NM(ES); and the theorem is proved. O

Theorem 5.3.9. Let Ejr be as in Definition 5.3.1 and let A be an abelian surface isomor-

phic to the product of any two supersingular elliptic curves. Then A= E x E.
Proof. This is attributed to Deligne by Shioda [Shi79, Theorem 3.5]. ]

Recall that S is a maximal order in B, and p | D. Recall also that an (O, S)-bimodule
is a left O-module M which is also a right S-module such that if x € O, y € S, and m € M,
then (zm)y = x(my). This implies that we have homomorphisms O — Ends(M) and
S°P > Endp(M). If both of these homomorphisms are optimal we say that M is an optimal
(0,S8) bimodule.

o8



Theorem 5.3.10. Suppose that O is an Eichler order of square-free level N in an indefinite
quaternion algebra B of discriminant D with (D, N) = 1. There is a bijection between the

following sets.

e superspecial O-abelian surfaces (A,1)r up to isomorphism

e Z-rank 8 optimal (O,S) bi-modules up to isomorphism

Proof. Ribet |[Rib89, p.38] proved this in the case where O is maximal (and thus optimality is
guaranteed) by showing each were in bijection with the set of homomorphisms f: O — My(S)
up to GL2(S) multiplication. To get a QM surface from f, consider (E x E, f) and note that
we have Endp(E) 2 S. To get a bi-module from f, consider § & S given the component-wise

right S action and left O-action by the homomorphism f: O — My(S) 2 Ends(S & S). O

Lemma 5.3.11. Let g|DN and let Q denote the unique two-sided integral ideal of norm q
in O. Under the bijection in Theorem 5.5.10, the action of wy described in Definition 5.2.2

corresponds to the action M — Q ®o M.

Proof. Take the isomorphism class of a superspecial surface (A, ) to the GLy(S) equivalence
class of the homomorphism ¢ which corresponds to the bi-module M. The bi-module Q®q M
is then isomorphic to 5,M as an (O,S)-bi-module since Q = 3,0 = Of,. Therefore to get

an action of O on this bi-module, we must pre-compose by ;! and post-compose by 3,. [

Definition 5.3.12. Let O,S be FEichler orders in a quaternion algebra over a number field
K. We say that two (O,S8)-bi-modules M, N are locally isomorphic if for all places v of K,
M, = N, as (O,,S,)-bi-modules.

Remark 5.3.13. It is in the condition of local isomorphism that we can keep track of whether

or not a surface (A,t) is mized or not [Rib89, p.39].
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Theorem 5.3.14. Let O,S be as in Theorem 5.3.10 and fix an (O, S)-bi-module M. Then
A :=Endp s(M) is an Eichler order in either Bp, if p+ D or Bpy, if p| D. Moreover, if we

fix a bi-module M, there is a bijection between the following two sets

e (0,8)-bi-modules N locally isomorphic to M up to isomorphism and

e Rank one projective right A modules up to isomorphism.

Let q # p be prime. This biyjection sends the action described in Lemma 5.3.11 to the

action [I] v~ [I1Qx], where Qy is the unique two-sided ideal of norm q of A.

Proof. The bijection in the case where O is a maximal order is a theorem of Ribet [Rib89,
Theorem 2.3]. The extension to Eichler orders (even of non-square-free level) as well as
showing the way the action of Lemma 5.3.11 transforms is due to Molina [Mol10, Remark

4.11|. His proof depends on showing that Homep s(V, Qo ® N) is Qj. O

Definition 5.3.15. Retaining the notation of Theorem 5.3.14, the action [I] v~ [IQx] will
be referred to as w,. Moreover if m is the product of primes ramified in A, we define wy, as

the composition of all w, ranging over q | m.

Corollary 5.3.16. Let m > 1. A superspecial O-abelian surface (A1) with corresponding
bi-module M s fized under the action of wy, if and only if there is an embedding of Z[/—m]
(or Z[(4] if m=2) into A = Endp s(M).

Proof. By Theorem 5.3.14, (A,:) is fixed by the action of w,, if and only if [[],,,, Qa] = [1],
which is to say if and only if the unique two-sided ideal of norm m is principal. Therefore
there is a fixed point if and only if there is an element v of Endp s(M) which can serve as the
principal generator. That is, 72A = mA so there is a unit u of A such that 2 = um. Therefore,
u € Zr where F' = Q(7), an imaginary quadratic extension of Q. Following Kurihara [Kur79,

Proposition 4-4|, u # 1 since A is definite, u>+1 = 0 can only happen if m =2, or u?+u+1=0
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can only happen if m = 3. This exhausts all possibilities since Q(u) c F. If u?> +1 =0 then
Zlu]l 2 Z[vy] withu~vy+1. fu?+u+1=0 then Z[u] 2 Z[vy] with u — v+ 1. O

This is of particular interest to us because of the following lemma.

Lemma 5.3.17. If (A,.) is a superspecial abelian O-surface over F, then w,(A,¢) (in the
sense of Theorem 5.53.14) is its F2[F,-Galois conjugate. Equivalently, if P : Spec(F) —
XP(N) corresponds to a superspecial abelian O-surface (A, 1) over F and ¢y :F - F is the

p-th power map, the following diagram commutes.

Spec(F) -2~ XP(N)

- )

Spec(F) = XP(N)

Proof. If p | D, then for all points P : Spec(F) - XP(N), the square of this Lemma com-
mutes. If p | N, and P : Spec(F) - XP(N) corresponds to an abelian O-surface (Ap,¢)
then by Theorem 5.2.24, w, P corresponds to (A®) Frob, ). By Lemma 6.0.4, this corre-
sponds to the point P¢j. If p + DN, we can reduce to the case p | N via the embedding
c: XP(N)p - XP(Np)p. O

Definition 5.3.18. Let (A, 1) be a superspecial O-abelian surface over F with corresponding

bi-module M. The length of (A,¢) is #(Endo,s)(M)*/£1).

Note that End(o,s)(M) = Endg(A,t) [Moll0, Equation 3.5]. Therefore if (A,¢) corre-

sponds to a point of XP(N)(F) then this definition agrees with Definition 5.2.20.

Corollary 5.3.19. Let (A,1) be a mized superspecial O-abelian surface with corresponding
bi-module M and whose length is divisible by three. Let N' be the level of O' = End (o s)(M)
and D' the discriminant of O’ ® Q. Then for all p | D', p =3 or p =2 mod 3, and for all
q| N, g=3 or ¢g=1mod 3. Moreover, (A,i) is fized by w,, if and only if m =1,3, D'N’ or
D'N'[3 if 3| D'N".
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Proof. Unless D' =2,3 and N’ =1, the only possible such length is three|Vig80, Proposition
V.3.1], and in each of those cases if p| D’ then p=2 or p=3. If (D',N") +(2,1),(3,1), the
length of (A,:) is three if and only if Z[(s] = O’ and the first part of our statement holds
by Theorem 4.1.28.

Regarding Atkin-Lehner fixed points, recall first that any (A,¢) is fixed by wy. If Z[(]
embeds into O’ note that Z[\/-3] c Z[(s] = O so (A1) is fixed by wy if 3 | D'N’. Now
suppose that m # 3 so by Corollary 5.3.16 we additionally have an embedding Z[/-m] <= O".
Since Z[(s] does not contain Z[\/-m] and vice versa, we have simultaneous embeddings if

and only if m = D’N’" or D'N’/3 if 3| D'N’ by Theorem 4.2.5. O

Corollary 5.3.20. Let (A,1) be a mized superspecial O-abelian surface with corresponding
bi-module M and whose length is even. Let N' be the level of O' = End(p,s)(M) and D' the
discriminant of O'® Q. Then for allp | D', p=2 or p=3mod 4, and for all | N, q =2
or ¢ = 1mod 4. Moreover, (A’,) is fized by w,, if and only if m = 1,2, D'N’ or D'N'[2 if
2| D'N'.

Proof. Recall that unless D’ = 2,3 and N’ = 1, the only possible even length is two[Vig80,
Proposition V.3.1], and in each of those cases our conditions hold. If (D', N') # (2,1),(3,1),
the length of (A,¢) is two if and only if Z[(4] = O and the first part of our statement holds
by Theorem 4.1.28.

Regarding Atkin-Lehner fixed points, recall first that any (A,:) is fixed by w;. If we
have Z[(4] = O’ then (A,:) is fixed by wq if 2 | D’N’. Now suppose that m > 2 so by
Corollary 5.3.16 we additionally have an embedding Z[\/-m] = O’. Since Z[(4] does not
contain Z[v/~m] and vice versa, we have simultaneous embeddings if and only if m = D’ N’

or D'N’/2if 2| D'N’ by Theorem 4.2.1. O

Recall now that O is an Eichler order of square-free level N in Bp where D is the square-

free product of an even number of primes and N is coprime to D. Let m | DN and let p be
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a prime not dividing DN. As usual § is a maximal order in B,,.

Corollary 5.3.21. There is a mized superspecial abelian O surface (Ag,,t) fized by w,, if

and only if one of the following occurs.

1. m=DN, g=3mod4 for all ¢| D, and ¢ =1 mod 4 for all ¢| N.
2. m=DN = +3 mod 8, (_?2) = -1 for all primes q | D, and (_?2) =1 for all primes q| N.

If p # 2, there is a mized superspecial abelian O surface (Ag,,t) fized by wy, if and only

if one of the following occurs.

1. 24+ D, m=DN, (ﬂ):—l, (_7”):—1 for all ¢ | D, and (%p):lfor all ¢ | N such

p

that q + 2.

2. 2| N, m=DN/2, (_D;Vﬂ) =-1, (—71;) =-1 forallq| D, and (%p) =1 for all q| N such

that q + 2.

q

3. 2| D, m=DN, p=+3mod S8, (%) =-1, (_—p) =-1 for all q| (D/2), and (%p) =1
for all ¢| N.

4. 2| D, m=DN/2, DN =2,6,10 mod 16, p = +3 mod 8, (%/2) -1, (71’) =1 for all
q| D, and(%p):lforallq|N.

Remark 5.3.22. Note that we deal equally with the cases where 2 | N and 2 + DN if

m=DN.

Proof. By Lemma 5.3.17, a superspecial abelian surface (A/FPQ,L) with corresponding bi-
module M is defined over I, if and only if it is w,-fixed. Therefore there is some (A, ,¢)

fixed by w,, if and only if there is some Eichler order of level N in Bp, which admits an

embedding of both Z[\/=m] (or Z[¢4] if m =2) and Z[\/=p] (or Z[{4] if p = 2).
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Let us first assume p = 2. Condition 1 is precisely Corollary 5.3.20 applied to the situation
where (m,2) = 1. Condition 2 is Theorem 4.2.9(5).
Now let us assume p # 2. Conditions 1 and 2 are Theorem 4.2.9(1-2). Similarly condition

3 is Theorem 4.2.9(3) and condition 4 is Theorem 4.2.9(4).
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Chapter 6

Primes of Good Reduction

Throughout this chapter we will fix D the discriminant of an indefinite quaternion Q-algebra,
N a square-free integer coprime to D, an integer m | DN and a prime p + DN. Recall that
XP(N),z, has a smooth special fiber by Theorem 5.2.18. Let wy, be as in Definition 5.2.2.
Let Z,» be as in Definition 4.1.14 with (o) = Autz,(Z,2) and let Z7 denote the quotient of
X (N)z, by the action of wp,0.

If p is split in Q(v/d), then XP(N) is isomorphic to CP(N,d,m) over Q,. We may then
obtain results on local points without appealing to Z.

If pis inert in Q(v/d) and CP(N,d, m) q is the twist of X (N),q by w,, and Q(v/d) then
Z is a Zy-model for CP(N,d,m)q,. This is because it follows from applying the theorem
on étale base change |Liu02, Proposition 10.1.21(c)| to the map X(?(N)Zp2 that Zp, is also
smooth.

Some easy results present themselves. For instance we may use Weil’'s bounds to show
that we have p-adic points for all but finitely many primes p. Throughout this section,

assume that g is the genus of XP(N)q.

Theorem 6.0.1. Suppose that p is unramified in Q(\/d) and p > 4¢g2. It follows that
CO(N,d,m)(Q,) 5.
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Proof. Recall that Weil’s bounds |Liu02, Exercise 9.1.15| tell us that if X is a smooth pro-

jective curve over [, then

| #X(Fp) - (p+1) <29/,

and thus #X(IF,) > p+1-2g,/p > 49> —4¢*> + 1 = 1. Hensel’s Lemma tells us that if we let
Zz, be a regular model of CP(N,d,m)q, and set X = Zg, then CP(N,d,m)(Q,) = 2(Q,)

is nonempty since g = g(CP(N,d, m)g, ). O

For p < 4¢?, we must use another technique. In the split case we use Shimura’s construc-
tion of the zeta function of X (N)g, using Hecke operators to give an exact formula for
the size of XP(N)(F,). In the inert case, we give a partial answer in terms of superspecial

points.

Definition 6.0.2. Let S be an F)-scheme and let A;s be an abelian scheme. Let Frob, :
A - AW and Ver, : AP - A be the Frobenius and Verschiebung isogenies, so that

Frob,- Ver,- = Ver,- Frob,r = [p"] on A®") and A respectively.

Definition 6.0.3. Let S be an F,-scheme and let (A, 1) be an abelian O-surface. By Frob,r .t
we denote the unique optimal embedding O < Endg(A®")) such that for all a € O the
following commutes:
A9
Froby,r | } Frob,r -

AG) Frobpl;b(a) A6

Lemma 6.0.4. Let S = Spec(Fp) and ¢, : S — S be the morphism given by the p"-th power
map. Let (Ajs,t) be a QM-abelian surface as in Definition 5.1.8 corresponding to a point
P:S— XP(N)s. Let Po¢,:S - S — XP(N)s denote the Galois conjugate point. Then

the QM-abelian surface corresponding to P o ¢, is Frob,(A,¢).
Proof. Fix an Eichler order O of level N in Bp. Note that Frob,(A,:) = (A®) Frob, . ¢).
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Denote by Ver,r . ¢: O < Endg(A) the unique optimal embedding such that for all a € O
the following commutes:
A Y 400
Ver,: | } Very: -

Verpr . ()
—

A A

Suppose that € : O = Endg(A) is an optimal embedding. Then denote by Ver,. e: O -

Endg(A) the unique optimal embedding such that for all o € O the following commutes:

Ver;,« e(a)

A®@") — AP
Ver,r | } Veryr -
A 94

We may now combine these to make the following diagram:

A ‘9 A
Frob,- | } Frob,r
A Frobyr . “@) Al
Ver,r | } Veryr
4 Veryr . Frobyr . ey 4

Noting that Ver, Frob,- = [p"]4 and that ¢(«)[p"]a = [p"]at() for all @ € O, we must have
Verr . Frob,r . 1 = 1. Therefore, by the uniqueness of fiber products, Frob,- . ¢(a) = Ver;, t(a)
and moreover Frob,-(A,:) = Ver,.(A,¢). Since Ver,- itself is the pullback of ¢, along A — S

[Liu02, p.94] we obtain our result. O

We may thus observe the following. Let £ is an algebraic extension of F,, and let (A, ¢)
be a QM abelian surface. Let xq € X (N)(k) correspond to (A,:)z. Furthermore let z,

correspond to Frob,r(A,¢). Then the set of Gal(k/F),)-conjugates of g is {z, : r > 0}.
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6.1 Split primes and the Eichler-Selberg trace formula

Definition 6.1.1. Let S be a Z,-scheme with p + DN. Let XP(N) be defined over S. If

(n, DN) =1, T, is the correspondence

Xg(N)s X (N)s

where ®1 is the modular forgetful map and &5 = &1 o w,.

The correspondences T;, are commonly known as Hecke correspondences. Let s be a closed
point of S with k(s) = k(s) so that X2 (), has a k(s)-rational point so that correspondences
on XP(N) are in bijection with endomorphisms of J (), [Mil86, Corollary 6.3]. Thus we
may also use 7}, to denote the endomorphism of JP(N), 2 J(XP(N)s) induced by the map
of sets XP(N)s » Div(XP(N)s) such that P+~ (P,,.P;)P. This operator on JP(N); is
commonly referred to as a Hecke operator. We will explore the case (n, DN) > 1 in section

6.2.

Theorem 6.1.2 (Eichler-Shimura). There is an equality of endomorphisms of JP(N)s be-

tween T, and Frob, + Ver,,.

Proof. The particularly simple proof given below was sketched by Stein in the case of the
elliptic modular curve X}(N) [RS11, Theorem 12.6.4]. We will show in fact that P ~
(®2,.@7) P agrees with Frob,, . +Froby as functions X§(N)g, — Div(Xy(N)g ). First we
note that if the above holds for all but finitely many points, then by continuity we have
our result. Therefore, it suffices to check that we have equality away from the superspecial
points.

By Theorem 5.2.24, XP(Np)9 = ¢«(XP(N)?) [Hw,c(XP(N)?) where X° refers to remov-

ing the superspecial points, ¢ is the natural embedding X (N) - X (Np) and w, is the
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p-th Atkin-Lehner involution.
It follows that if P € XP(N)? then

(®1P) = c.(c(DTP)) + (wpe)« (wpe) (1 P) = €2 (P16)" P + (wpc) (Prwpe) " P,

Recall now that ®;c is the identity and ®w,c is the Frobenius Frob, . Thus ®jP = ¢.(P) +

(wpc)«(Froby P). This implies that

By, BIP = By, PP
= @y wp, . (e (P) + (wye).(Frob, P))
= @y (wpc.(P)+c.(Frob; P))
= &y wy.c P+ ®y.c, Frob) P

= Frob,, P +Frob, P

Now note that Frob, . as a function X’(N)g - Div(X§(N)g, induces the Frobenius
isogeny Frob, on JP(N). Note also that since Frob,, Frobs H = pH for all divisors H on
XP(N), [Liu02, Proposition 9.2.11], Frob, induces Ver, = Frob;7 the unique dual isogeny to
Frob,, on J@’(N)g, .

0

Definition 6.1.3. If Cg, is a smooth, projective curve, we may define the zeta function of

C as
Z(C,z) = exp (i#C(Fpr)%T) .

Shimura [Shi67] proved that the trace of Hecke operators carries a deep relation to the
number of points of a modular curve over a finite field. Namely he showed the following

explicit formula for the zeta function.
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Theorem 6.1.4. If we fix a prime { + pDN, then

detHO(X(?(N),Q)(Ig - Tpx +px219)
(1-2)(1-pz)

Z(Xg (N)g,, ) = (6.1)

Proof. First we note that for a complex curve X, there is a natural isomorphism between
m and HO(X,Q)" given by the map w = [, -Aw. Here Q is the canonical sheaf,
which in this case is the sheaf of holomorphic differential one-forms. Therefore the standard
Hodge decomposition of H!(X(C)) in the classical topology can be written as H°(X,Q) &
HO(X,Q)V. Suppose now X is the generic fiber of a smooth and proper relative curve X
over a mixed-characteristic discrete valuation ring with separably closed residue field and
X is the special fiber of X. Then, we can invoke smooth and proper base change [Mil80,

Corollary VI.4.2] twice to realize

H' (X, Q)

H'(X(C))

HY(X,Qy)

IR

IR

IR

HY (X, Q) e H(X,Q)

1R

HY (X, Q) e H'(X,Q)"

IR

HY(X,Q) e H'(X,Q)"

Now we invoke the Weil Conjectures for curves [Mil80, Corollary V.2.6]. That is,

2 ) 1y (1+4)
Z,(XP(N),,x) = [ det (Id - x Frob, | H/(XP(N)., Q) ™"

1=0

We now recall briefly that since dim XP(N)s =1, (Id - zFrob, | HY(XP(N)s, Q1)) =
(1-2) and (Id-xFrob, | H*(XP(N)s, Q) = (1 - px). However, since H'(XP(N);, Q)
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HY(XP(N)s, Q)@ HO(XP(N)s, Q) 2 HY(JP(N)s, Q) o HO(JP(N)s, Q) v[Mil86, Proposition
2.2|, we have (Id -z Frob, | HY(XP(N)s,Q)) equal to

(Id -z Frob, | HO(JP(N).,Q))(Id - 2 Frob! | H'(JP(N).,Q))

(Id - z(Frob, + Ver,) + 2% Frob,, Ver,) |H0(X§(N)’Q)

(Id-Tyx + pa*Id) |H0(X0D(N),Q) '

O
Corollary 6.1.5. [JL85, Proposition 2.1] If r > 1 then
#XP(N)(Fpr)) =p" + 1= tr(Tyr) + ptr(Tp2) (6.2)
and if r =1,
#Xo'(N)(Fy)) =p+1-tr(T}) (6.3)

Let 0y as the usual divisor sum function. Let w, f be as in Definition 4.1.25 and ep x be

as in Definition 4.1.27.

Theorem 6.1.6. [Eichler’s Trace Formula, [Eic56, §4]] Let D be the discriminant of an
indefinite rational quaternion algebra, N a square-free integer coprime to D and € a prime
not dividing DN. Let tr(T,,) denote the trace of T,, on H'(XP(N)c, Qy).

If n is not a square and (n, DN) =1, then

NG ep oy (E5in
tr(7,) = o1(n) - Z M

(6.4)
s=-[2/) fIf (7=4n) W (52;24”)

Corollary 6.1.7.

12,/7] epw (S
AXPN(F) - Y Y M

s==12/p] fIf (s>~4p) w( 12 )
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6.2 Inert primes and the Eichler-Selberg trace formula

We shall briefly follow Rotger, Skorobogatov and Yafaev [RSY05, §2| to obtain a formula
for the number of points of CP(N,d,m)(F,). This will not give a strict numerical criterion
for the presence or absence of points, but it will give an exact formula as we will see in
Theorem 6.2.6. In certain cases however, such as when m = DN, we will be able to use the
properties of superspecial points to get numerical criterion, as in Corollary 6.3.2. We begin
by extending the definition of Hecke operators 7.

Suppose that (DN

=(n, DN)|DN and n' = Let S be a Z,-scheme

o) = 1 DNy

and ®; : XP(Nn')s - XP(N)s be the forgetful map. By abuse of notation, let w,, denote
the Atkin-Lehner involution on either X (Nn')s or XP(N)g. Note that ®1w,, = w,,P1, so

if s is a closed point of S with k(s) = k(s), T wpy, = w, Ty : XP(N)s = Div(XP(N)s).

Definition 6.2.1. Suppose that (DN =1, m=(n,DN)|DN and n' = Then

7(nDN)) (0

define T,, = w,, T .

Let m | DN and consider the quotient (XP(N)/wy,)s. Let © denote the canonical sheaf
of (XP(N)s. Since w,, is an involution, H(XP(N)s, Q) decomposes into the direct sum
of the +1 and -1 eigenspaces under its action. Note that HO((XP(N)/wy,)s,2) is the +1
eigenspace.

Suppose that v € HO(XP(N),, Q) such that w,,v = v. Then w,,Tv = Tyw,v = T,v and

therefore T, acts on HO((XP(N)/wp)s, Q).

Definition 6.2.2. If p + DN and m|DN, then by Tp(m) we denote the restriction of T, to
HO((Xg (N)[wim)s, €2).

Note that since T, p(m) is just 7}, on a smaller vector space,
T{™ = Frob, + Ver,
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on Jac((XP(N)/wn)s) by Theorem 6.1.2.

Corollary 6.2.3. Let g’ be the genus of (X (N))/wy)r,. The zeta function of the quotient

curve is .
det o xp(w) .0 Ly = Tp"s + ps*ly)

(1-s)(1-ps)

Proof. Since Tém) = Frob, + Ver,, on Jac((XP(N)/wm)s), we may say that Eichler-Shimura

Zy( X5 (N) [ty 5) =

holds on (XP(N)/wy,)r,. Therefore we may reuse the proof of Theorem 6.1.4. O

We may thus see that if r > 1 then

H(XP(N) fw) (Fyr) = p + 1= te(T5) + ptr(T),

and
#(XG (N fwn) (Fy) = p+ 1~ tx(T;™).
We now reinterpret these quantities. If we let uy,...,uy be a basis for the +1 eigenspace
of wy,, and vy,...,v4-4 a basis for the 1 eigenspace, we have

Tywp(arug + -+ agvgg) = Ty(agug+-++agugy)

Tpr(agl+1vl + -+ agvg_g,)

Thus T + Tyry = QT;EWW ) and so

(7)) = tr(@) (6.5)
_ %(tr(Tpr)+tr(Tprm)) (6.6)

We may thus explicitly compute the traces on the quotient curve using Eichler’s Trace

Formula 6.1.6 to obtain the following.
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Theorem 6.2.4. If r > 1 then

tr(Tyr) + tr(Lyrm) . p(tr(Tyr-2) + tr(Tpr-—2p))

FOPN) ) (Fyr) =7 +1 . .

(6.7)

and if r =1 then
tr(7,) + tr(Tpm)
2

#(XG (N) fwm)(Fy) =p+1- (6.8)

We may again use the trace formula to determine CP (N, d, m)(FF,), though in a some-
what oblique way. Consider that for any prime number p if (g) = 1 then Q(Vd) - Q,
by Hensel’s Lemma. Hence CP(N,d,m) zq, X{(N) since they're already isomorphic over
Q(V/d) by definition.

d
Suppose alternately that (—) = —1. Consider the following:
p

Lemma 6.2.5.
24 X5 (N) [wi(Fpr) = # X3 (N)(Fyr ) + #CP (N, d,m) (Fyr ) (6.9)

Proof. Consider the quotient maps

X§(N)(Fyr) CP(N,d,m)(Fyr)

X (N) Jwm(Fpr)

Consider that X (N)/w,,(F,-) is made up of the set of equivalence classes [P, Q] such
that P,Q € XP(N)(F,), wn(P) = Q and for all ¢ € Gal(F,-/F,-) either cP = @ and
o) = P or oP = P and Q) = (). In either case, P,Q) € F,:» and we may fix o as the
generator of Gal(F,-/F, ). The former case indicates that w,,0P = w,,@Q = P and thus
P,Q e CP(N,d,m)(F,) while the latter case indicates that P,Q € XP(N)(F,-).

If P#Q then [P,Q] is a point over which the (geometric) map XP(N) - XP(N)/wp,
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is unramified, and so gives rise to two points in either XP(N)(F,) or CP(N,d,m)(F,) as
the case may be. If P =@ then [P,Q] =[P, P] is a ramification point for the above map.
Note however that we have both w,,0 P = P and 6P = P so P lies both on X (N)(F,-) and
CP(N,d,m)(F,). In either case a rational point on X (N)/w,, gives rise to two rational

points on the disjoint union of the two F, twists of XP(N).

O
We are instantly left with the following result:
Theorem 6.2.6. Let p be inert in Q(\/d) and let m|DN. If r > 1 then
#CP(N,d,m)(Fpr) =p" + 1= tr(Tyrm) + ptr(Tyr-2p,) (6.10)
and if r =1 then
#CP(N,d,m)(F,) =p+1-tr(Tpn) (6.11)
Proof.
#CP(Nd,m)(Fyr) = 23X5 (N)/wm(Fyr) = #X5 (N) (Fpr)
= 2" +2—tr(Tyr) —tr(Tyrm)
+ ptr(Tyr—2) + ptr(Tyr-2y)
- (p+1-tx(Ty) + ptr(Tyr—2))
= p+1-tr(Tprm) + ptr(Tpr2m)
O
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6.3 Inert primes and superspecial points

We now use the theory of superspecial points to gain explicit criteria for the presence of
rational points in certain situations. Recall that the superspecial points of X(N)(F,) are
in bijection with Pic(Dp, N') via the embedding ¢ : XP(N)g, - X (Np)r, by Lemma 5.2.25.
Recall also that the action of Frob, € Gal(F,/F,) on the superspecial points in X (N)(F,)

is given by w, by Lemma 5.3.17.

Theorem 6.3.1. Ifp + DN is inert in Q(\/d), then CP(N, d,m)(Q,) is nonempty if either
e mp #3mod4 and ep, y(-4mp) 0, or
e mp =3 mod4 and one of ep, n(—4mp) or ep, n(—mp) is nonzero, or
e p=2,m=1, and one of epp n(-4), epp,n(=8) is nonzero.

Proof. Let ¢; denote the p-th power map on F,. We wish to determine if Z(F,) contains a
superspecial point. That is, we wish to determine if Z(F,) contains a point invariant under
the action of Galois which corresponds (via the bijection of Z(F,) with XP(N)(F,)) to a
superspecial abelian surface over F,. This occurs if and only if there is a superspecial point
P e XP(N)(F,) such that P =w,, P¢?, which in this context becomes 1w, P.

By Corollary 5.3.16, there is a superspecial w,,,-fixed point if and only if there is an
embedding of Z[,/=mp] into the End,(0)(A) of the superspecial abelian surface (A,¢) cor-
responding to P, or possibly Z[(4] if mp = 2. Now recall that every embedding of an order
R induces an optimal embedding of some R’ > R.

If mp = 2 then both Z[(;] and Z[\/-2] are maximal orders, of discriminants —4 and -8
respectively. If mp =1 mod 4, then Z[,/-mp] is maximal and of discriminant —4mp.

If mp = 3mod 4 then Z[,/~mp] again has discriminant —4mp but is no longer maximal.
It is contained in Z[ﬂ], which is maximal and has discriminant —mp. Since there are

2

no intermediate orders, this completes the proof. O
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Corollary 6.3.2. If p + DN is inert in Q(\/d), CP(N,d,m)(Q,) is nonempty when m =
DN. Moreover, Z(F,) contains a point whose base change to Fp corresponds to a superspecial

surface.

Proof. 1t suffices to note the following.

s (-2 [452)

€Dp7N(—4DNp)

q|Dp q aN q
= h(-4DNp) l|;l (1) 1;[\[(1)-

Since ep, n(-4DNp) # 0, Theorem 6.3.1 implies that CP(N,d, m)(Q,) is nonempty. [
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Chapter 7

Ramified Primes

Throughout this chapter we will fix D the discriminant of an indefinite quaternion Q-algebra,
N a squarefree integer coprime to D, a squarefree integer d, an integer m | DN and a prime
p + DN ramified in Q(+/d). Let XP(N))q be given by Corollary 5.2.14. Let w,, be as
in Definition 5.2.2. Let CP(N,d,m),q the twist of XP(N) by Q(v/d) and w,,. If A <0,
let Ha(X) € Z[X] [Cox89, p.285| denote the Hilbert Class Polynomial of discriminant A,
and recall that this is simply the polynomial whose roots are the j-invariants of elliptic
curves with complex multiplication by Ra in the sense of Definition 4.1.25. Recall ep x from

Definition 4.1.27. The purpose of this chapter is to prove the following theorem.

Theorem 7.0.1. Suppose that p + 2DN is a prime which is ramified in Q(~v/d) and m|DN.
Then CP(N,d,m)(Q,) #+ @ if and only if one of the following occurs.

1. epn(-4m) #0, (ﬂ) =1, and H_4,,(X) =0 has a root modulo p

p

2. m=3mod4, ep n(-m) %0, (%) =1, and H_,,(X) =0 has a root modulo p

3. m=DN, 2+ D, (ﬂ) = -1, (%p) = =1 for all primes q | D, and (%p) =1 for all

p

primes q | N such that q # 2
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4. m=DNJ2, 2| N, (_D]])V/Q) =-1, (_?p) = -1 for all primes q | D, and (_?p) =1 for all

primes q | N such that q # 2

5.m=DN, 2| D, p=+3modS§, (%) = -1, (‘;p) = =1 for all primes q | (D/2), and

(%) =1 for all primes q| N.

6. m=DN/2, 2| D, DN =2,6, or 10mod 16, p = +3 mod 8, (‘D;V/Q) -1, (7’?) =1 for

all primes q | D, and (%p) =1 for all primes q | N.
Compare this to the following theorem.

Theorem 7.0.2. Let p be a prime, (p,2N) =1, D=1, and m=N. Then CP(N,d,m)(Q,)

is nonempty if and only if either H_4,(X) =0 has a root modulo p.

Proof. Suppose that p>2, D =1 and m = N. By [Ozm09, Proposition 5.5], CP(N,d,m)(Q,)
is nonempty if and only if there is a prime v of B = Q[ X ]/(H_4,,(X)) such that f(v|p) = 1.
But then since p # 2 does not divide N, p is unramified in B. Therefore there exists a prime
v such that f(v|p) =1 if and only if H_4,,(X) = 0 has a root modulo p [Ser79, Proposition
15). O

We may combine the results of Theorem 7.0.1(3) with those of Theorem 7.0.2 to yield

the following.

-1.

Corollary 7.0.3. Let p # 2 be a prime and let N be a squarefree integer such that (%)

It follows that H_4n(X) has a root modulo p if and only if for all odd primes q| N, (%’) =1.

To establish Theorem 7.0.1 and Corollary 7.0.3, we determine a regular model over Z,, of

CP(N,d,m)q,. We shall indeed show the following.

Theorem 7.0.4. There is a reqular model Xz, of CP(N,d,m)q, with the following prop-

erties. There is an equality of divisors on X,



such that each T; is defined over F, and is prime, each d; <2, dy =2, Iy 2 (XP(N)/wpn)w,,
and for all i >0, p,(T';) = 0.
Suppose additionally that p # 2. Then for all i >0, d; =1 and Iy intersects with I'; in a

unique point (Q; is such that Y0 Q; is the branch divisor of XP(N)z, = (XP(N)/w,)x, -

In fact, we shall show that if p # 2, X" is the blowup of a scheme Z,z, such that there is an
equality of divisors Zg, = 2I" where I' (X (N)/wy, )r,. Therefore there are smooth points

of X(F,) if and only if F, = F,(P;) = F,(I";) since I'; = [Liu02, Theorem 8.1.19(b)].

1
PFP(Qi)
After constructing Z and X, we will describe F,(Q;), i.e., the F,-rationality of w,,-fixed

points.

7.1 The first steps towards forming a model

Let us begin with a few foundational facts.

Lemma 7.1.1. The modular automorphism w,, : XP(N) > XP(N) (over any base) is the
identity map precisely when m = 1. In particular if m # 1 and k is any field, wy, : X (N);, -

XP(N) is not the identity.

Proof. This is simply a consequence of the action of w,, as in Definition 5.2.2 on QM abelian

surfaces up to isomorphism. O

Lemma 7.1.2. Let X be a curve with potentially semistable reduction realized by a cyclic
totally ramified extension L/K of local fields. Let k be their common residue field and let
S|R be the corresponding extension of discrete valuation rings. Let Y — Spec(.S) be a regular
model of X, Gal(L/K) = (o) and assume that there exists some « an automorphism of

above o : Spec(S) — Spec(S) extending the Galois action on Xp,.

1. The quotient Z = Y/[{a) is a scheme of relative dimension one over Spec(R) with

generic fiber X,
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2. Let &,...,&, be the generic points of the irreducible components C1, ..., C, of Vi lying
above a component C' of 2, with generic point . Let D; = D(&1[€), 1; = 1(&|€) denote
the decomposition and inertia groups, respectively. Then the multiplicity of & in Zj, is

|Diln/|I3].

Proof. That Z is a Spec(R)-scheme follows from the universal properties of the quotient
as outlined in [Vie77, 3.6]. In particular by the definition of 7 lying above o, the map
Y — Spec(S) — Spec(R) is T-invariant and thus induces a map Z — Spec(R).

To obtain the multiplicities, we recall [Liu02, VIII.3.9] that the multiplicity of &; is v;(s)
where v; is the discrete valuation of Oy, and s is a uniformizer of S. As ) has semistable
reduction, v;(s) = 1 for all 7. Likewise the multiplicity of £ is v(r) where v is the discrete
valuation of Oz ¢ and r is a uniformizer of R. As ) — Z is Galois, there are positive integers
e, q such that v; |g=ev and g =| D;/I; | for all i and [L : K] = eqn. As L/K is totally ramified,

rS = s¢nS. It then follows that

ev(r) = v;(r) = v;(s°1") = eqnu;(s)

and thus

v(r) = gnui(s) = qn = Dyl | n=[ D [ n] | L |
[l

Lemma 7.1.3. Under the hypotheses of Lemma 7.1.2, the non-reqular points of Z are pre-

cisely the branch points Q,...,Qy of Vi = 2y

Proof. Since X - X is étale the ramification points of f are exactly Py == f~1(Q1),..., P, :=
f71(Qs). To see this, note that Z is Noetherian, and thus normal [Kirl0, Proposition 2.2.1]

and thus geometrically unibranch. Since dim) = dim Z we find that f is étale away from

Py, ..., P, |Gro64, 1V.18.10.1] and thus Z is regular outside of f(P),..., f(FP,). Conversely
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if these points were regular, f would be flat [AK70, V.3.6] and in that case the branch
locus is either empty or pure of codimension one |[AK70, VI.6.8] and thus dimension one.
But this cannot be as we just proved the branch locus of f was the zero-dimensional set
{f(P1),...,f(P)} by showing that the ramification locus of f is precisely the domain on

which f is not étale. O

Now we apply these lemmas to our situation. If K = Q, and L = Qp(\/a) then R =Z,,
S = Z,[\Vd], k =F,, and o(/d) = —/d. If additionally X = XP(N)q,, then Vg, is smooth
and we may realize ) = X(?(N)/zp[\/a] from Corollary 5.2.14. If we take a = w,, oo and take
Z = Y/{a), then the following holds.

Theorem 7.1.4. The scheme Z7, = Y[{«) has generic fiber CP(N,d,m)q,, and there is

an equality of divisors Zg, = 2I" where I 2 (XP (N) [wy, )w, .

Proof. The scheme Z was constructed to have CP(N,d,m)q, as its generic fiber. Since
there is a unique component of Vr,, there is a unique component of Zr, so n = 1. Let £, &
be the generic points of the components of Vy, and Zg, respectively. Then D(&'|€) = ()
since a preserves Vg, . By Lemma 7.1.1, I(£'|€) = {id}, so the multiplicity of the component
corresponding to £ is 2.

To determine the I' such that 2I' = Zg, recall that the pushforward under f:Y —» Z
of Vg, forms a prime divisor of Z in Zr, and must therefore be I'." To determine this
pushforward, note that the induced action of ¢ on Spec(F,) is trivial and consider the

following commutative square.

Y = Y

| J

Spec(Zy[Vd]) —= Spec(Z,[Vd])
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The fiber product of this square with Spec(F,) - Spec(Z,[V/d]) is simply the Spec(TF,)-

involution wy, on Vg, = XF(N)r,. This is to say that it becomes the following triangle.

XP(N)g, e XP(N)g,

~

Spec(F,)

It follows that f, when restricted to Vg, becomes simply the quotient map X (N)g, —
(XL (N)/wp)r,, and therefore I = (XF (N) [wy, )w, - O

We note that by Lemma 7.1.3, that Z is not generally a regular scheme, and may require

some singularities to be resolved. To make this easier, we fix the following.

Definition 7.1.5. Fiz an ordering {Q;} of the branch points of the quotient map f :
XP(N)r, = (XP(N)/wp)r,. Let P; denote the unique preimage of Q; under f.

Note that by definition, the P; are exactly the points of XP (N )r, fixed by w,,. We will
explicitly describe a desingularization in the strong sense [Liu02, Definition 8.3.39] of Z and
thus a regular model of CP(N,d,m)q,, at least when p # 2. However, we will first describe

the branch points {Q;} and their F,-rationality.

7.2 Atkin-Lehner fixed points over finite fields

Throughout this section, we will keep the notation of Definition 7.1.5. Note that since
Q,[Vd] is totally ramified over Q,, F,(Q;) = F,(P;). It can be shown [Liu02, Corollary
8.3.51| that Z admits a desingularization in the strong sense [Liu02, Definition 8.3.39]. The
following lemma shows that if we make an assumption on the form of a desingularization of

Z, we can draw conclusions about Z(Q,).
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Lemma 7.2.1. Let 7 : X - Z be a desingularization in the strong sense and assume that
for all i, 7=1(Q;) is a chain of rational curves such that at least one has multiplicity one.

Then CP(N,d,m)(Q,) is nonempty if and only if either
1. (%) =1 and one of the following holds:

e m=2or
o H_4,,(X) has a root modulo p or

e m=3mod4 and H_,,(X) has a root modulo p,

2. or (%) =—1 and one of the conditions of Corollary 5.3.21 are satisfied.

1

F(Q)" Therefore

Proof. Note first that each component in 771(Q);) must be isomorphic to P
by our assumption on 7, IF, = F,(Q;) if and only if there is a reduced copy of ]PIle in 771(Q;).

By Corollary 5.3.5, any QM abelian surface over a finite field must be either ordinary or
supersingular. Suppose first that (A,¢) is supersingular and fixed by w,,. By Lemma 5.3.7, if
(A, 1) is a supersingular QM-abelian surface over a finite field of characteristic p, then (A, )
is superspecial. Therefore, one of the conditions of Corollary 5.3.21 hold if and only if there
is a QM abelian surface (A,¢) fixed by w,, whose corresponding point P; is F,-rational.

Now suppose that (A,¢) is an ordinary QM-abelian surface over a finite field £ fixed by
Wy,. By Theorem 5.3.8, there are elliptic curves E, E’ such that Endg(FE) 2 End,(E") 2 R =
Z[\/-m] or Z[@] (or Z[¢4] if m=2) and A= E x E’. Now note that the j-invariants of
E, E" are both roots of H_4,,(X) mod p, H_,,(X) mod p if m =3 mod 4, or H_4(X) if m =2.
Note also that if m =2, then H_4(X) and H_g(X) have degree one. Since the j-invariants
of £ and E’ are defined over F,,, (A,¢) is defined over F,. Therefore if P, corresponds to the
surface (A,¢) then F,(P;) =F,.

Since the reduction modulo a prime lying above p of an elliptic curve with CM by R is

ordinary if and only if (%) =1 |Lan87, Theorem 13.12|, we obtain that (%) =1 if and only
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if (A, ) is ordinary.

We have thus shown that either condition 1 or condition 2 holds if and only if there is a
reduced copy of IP’]IFP in some 771(Q);). Since the strict transform of I" in X has multiplicity
two, the presence of a reduced copy of IP’]le in some 71(Q;) is equivalent to the presence of
a smooth point of X(F,). By Hensel’s Lemma [JL85, Lemma 1.1], the presence of a smooth

point in X(F,) is equivalent to X' (Q,) and thus CP(N,d,m)(Q,) being nonempty. O

Remark 7.2.2. Note that by Lemma 7.2.1, it is necessary in any case that some @Q; 1is

F,-rational in order for CP(N,d,m)(Q,) to be nonempty.

7.3 Tame Potential Good Reduction

In this section we construct a regular model of CP(N,d,m)q,. Let &z, = Blyg,j(Z), the
blowup of Z along the branch divisor of Vg, - Zg, [Liu02, Definition 8.1.1]. Since the blowup
construction gives a map X — Z which is an isomorphism away from {Q;}, X is a regular
model if and only if X - Z is a desingularization in the strong sense if and only if A is a
regular scheme.

To see that this is a regular scheme, let R = 737, a strict henselization of Z,. We will
construct in this section an auxiliary scheme X /IE' If we can show that Xz = X7, it will follow
that X is regular [CES03, Lemma 2.1.1]. Thus, the hypotheses of Lemma 7.2.1 would be
satisfied and thus Theorem 7.0.1 would be proved.

We first recall the following.

Definition 7.3.1. [CES03, Definition 2.3.6] Let X/’D be a normal curve with smooth generic
fiber over a connected Dedekind scheme D. Let also § be a closed point of D with perfect
residue field, let ( be a generator of un(m), and let w5 be a uniformizer for 0 in Opg.
A closed point ' in a closed fiber X is a tame cyclic quotient singularity of type (n,r) if

there are non-negative integers n,r,my, ma such that O34 w18 1somorphic to the subalgebra
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of pn(k(9))-invariants in O3 s[[t1,t2]]/ (17" t5* — m5) under the action t; = (t1, ty = ("ty,

subject to the following.

e The integer n is greater than one and not divisible by char(k(d)).
e The integer r is coprime to n.

e The integers my is positive and my = —rms mod n.

Also fix S = R[\/d], k' the residue field of S, k the residue field of R, and note that both

k and K’ must be isomorphic to Fp. We now note the following.

Lemma 7.3.2. Suppose that p # 2 and let Q) be a point of Q; xgz, R. Then Q is a tame cyclic

quotient singularity with n =2 and r = 1.

Proof. By Lemma 7.1.1, the action of w,, at a w,,-fixed point of X’(N),, is nontrivial. Let @
on Vg denote the extension of o on Y. We wish to show that 6% is the ring of invariants of
a iy (or since p # 2, Z/27Z) action. Fix an isomorphism S[[X]] = (9;; where P is the unique
preimage of @ under f : Vs — Z5. Since wy, is always Galois-equivariant, a(ﬂ) = —\/d.
Since @ induces an isomorphism S[[T]] = S[[a(T)]], &(T) = Pa(T) = Y51 4T7. Since
@ is an involution, o; = —1. Note then that since p # 2, @(T) - T = -2T(1 + O(T)), i.e.
a(T) - T = -2T mod (T?). Since -2 ¢ mg, S[[T]] = S[[T"]] where T" := &(T) - T. Note
also that @(7") =a(a(T) -T) = T - a(T) = —(T"). Therefore \/d and T form a basis of
uniformizers for the two-dimensional local ring @3}; and @ acts as —1 on both \/d and 7.

Note now that (—9’2;2 is the ring of invariants of the pus-action given by @ on S[[T"]].
Recall that since p # 2 is a uniformizer for R and p is ramified in Q(\/E) where d is square-
free, d is also a uniformizer. Therefore S[[T"]] = R[[t1,t2]]/(t]"t5* —d) where m; = 2, to = T",

and mo = 0. It follows that () is a tame cyclic quotient singularity with n =2 and r=1. 0
From here on, let b’ be such that Zle Q;xR= Z?;l Q..
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Definition 7.3.3. Let R be a discrete valuation ring with algebraically closed residue field,
X/r be a scheme, and P a tame cyclic quotient singularity of X of type n,r. Then [CES03,

Theorem 2.4.1] we can inductively produce a chain of divisors Ey, ... Ey and a set of integers

bi,...,bx such that

o There is a resolution Xp — X of the singularity at P whose fiber over P is the chain

made up of the F;’s

o EZE] :5i,ji1 Zfl¢j, E?:—bj <—1,

[ J % = bl —
This Xp is called the Hirzebruch-Jung desingularization at P.

Theorem 7.3.4. If p # 2 there is a desingularization of R-schemes X' — Z5 such that X

has the form

2T,

where T is the strict transform of I'y and for all i >0, T} = Pk. This is to say that there is an
equality of divisors on X' between X; and 2I'j+ Z?lzl I}, TonTj = Q; € Qi xz, R, and all intersections
are transverse. Moreover Xz = X', and since X' is a regular scheme, so is X. It follows that X is

a regular Z, model for CP(N,d, m)q,-

Proof. We construct X’ by performing the Hirzebruch-Jung desingularization at () for all )
in all Q; x R. By Lemma 7.3.2, n =2, r =1 and thus A = 1 and b, = % in Definition 7.3.3.

Therefore &] has the form above [CES03, Theorem 2.4.1].

Recall now that X" — Z5, Az — Z5 are birational morphisms and so there is a birational

map f: Xy -> &’ making the following diagram commute.
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Since R is Dedekind, f! 1y is the identity and f can be extended so that the preimage
of each divisor on either Az or &” is again a divisor, we find that f is a morphism and thus
an isomorphism [Liu02, Theorem 8.3.20|. It follows that A% is regular and therefore X is
regular [CES03, Lemma 2.1.1]. ]

Corollary 7.3.5. Theorem 7.0.1 holds.
Proof. By Theorem 7.3.4, the conditions of Lemma 7.2.1 hold. O

Remark 7.3.6. It can be easily shown that X is actually the minimal regular Z, model of
CP(N,d,m)q, if its genus is at least one, because there are no exceptional divisors in that
case. In fact we have shown that for all i > 0, I'; is a -2 curve and thus if the genus of

CP(N,d,m)q, is at least two then Z is the canonical model.

Remark 7.3.7. In the case that XP(N)/w,, = IP]lFP we may deduce this theorem from work

of Sadek [Sad10)].

7.4 Wild Singularities

Retaining the notation of Lemma 7.1.3, if p = 2 we still have that Z/z, is a normal scheme,
non-regular precisely at the fixed points on the special fiber of w,,. Moreover, these singular-
ities are still Z/2Z-quotient singularities. Once more, we may resolve these singularities to
give a regular model of CP(N,d, m). If one tried to run through the arguments of the tame
section, one would find that among other things, the argument for finding a new uniformizer

in Lemma 7.3.2 fails spectacularly.
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In contrast to the case p # 2, these cyclic quotient singularities must be wild, which is
to say that p | #I, whenever I is the inertia group of a fixed point of w,,. As such, the
resolution of these singularities is not given by inserting a single reduced component, but
rather a tree of possibly non-reduced components about which we know very little. It is
known that if g > 1, the dual graph of the resolution must contain a node [Lor1ll, Theorem
5.3], but there is not much control otherwise.

The fact that the case D =1 and D > 1 are so similar in other respects suggests that at
least one of the components is reduced in the resolution of one of the singular points of Z
[Ozm09, Lemma 5.8|. It is however not clear how to proceed on this without some knowledge

of the higher ramification groups at these singular points.
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Chapter 8

Primes dividing the level

Throughout this chapter we will fix D the discriminant of an indefinite quaternion Q-algebra,
N a squarefree integer coprime to D, a squarefree integer d, an integer m | DN, and a prime
p | N unramified in Q(v/d). Let w,, be as in Definition 5.2.2. Let XP(N)q be as defined
in Corollary 5.2.14, and let CP(N,d, m),q be its twist by Q(+/d) and w,,. The purpose of

this section is to prove the following theorem.

Theorem 8.0.1. Let p| N be unramified in Q(v/d) and m | DN. We have CP(N,d,m)(Q,)

nonempty if and only if the conditions of (a) or (b) hold.
(a) p is split in Q(\/d) and one of the following conditions holds.

e D=1 [Lemma 8.2.1]

e p=2, D=1TIp; with each p; =3 mod 4, and N/[p = [1;q; with each q; =1 mod 4
[Lemma 8.2.5]

e p=3, D=1TIp; with each p; =2mod 3, and N/[p = [1;q; with each q; =1 mod 3
[Lemma 8.2.4]
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e The following inequality [Lemma 8.2.5] holds

LQ\/Z_?J eD,N/p(%)
2 ( ) el R
f1f(s2~4p)

s==[2/p] w (—)
s+0 g f?

(b) p is inert in Q(\/d), and there are prime factorizations Dp = [1;p;, N/p = [1,q; such

that one of the following two conditions holds

(i) p|m, and one of the following two conditions [Theorem 8.1.2] holds.
e p=2, m=p or DN, for all i, p; =3 mod 4, and for all j, q¢; =1 mod 4
e p=3mod4, m=p or2p, for all i, p; # 1 mod 4, and for all j, ¢; # 3 mod 4
(i) p+ m and one of the following nine conditions holds.
e m=D=1 [Lemma 8.2.1]
e p=2,m=1, forall i, p; =3 mod 4, and for all j, ¢; =1 mod 4 [Lemma 8.2.3]
e p=3,m=1, for all i, p; =2 mod 3, and for all j, ¢; =1 mod 3 [Lemma 8.2.4/
e p=3mod4, m=DN/2p, p; # 1 mod 4 for all i, and g; # 3mod 4 for all j
[Lemma 8.2.5]
e p=2mod3, m=DN/3p, p; # L mod 3 for all i, and q¢; # 2mod 3 for all j
[Lemma 8.2.4]

m=DN|/p, p; # 1 mod 4 for all i, and q; # 3 mod 4 for all j [Lemma 8.2.3]

m=DN|[p, p; # 1 mod 3 for all i, and q; # 2 mod 3 for all j [Lemma 8.2.4]

mp#3mod 4 and (p+1) —tr(Tpm) > % [Lemma 8.2.5]

mp =3 mod 4 and (p+1) —tr(T,,) > DpNip(mp) | €. (ATm) [Lemma 8.2.5]

w(-mp) w(-4mp)
As a special case, we recover the following explicit numerical conditions.

Corollary 8.0.2. Let p be a prime dividing N such that p s unramified in Q(\/E) Then
CP(N,d,DN)(Q,) is nonempty if and only if
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e p is split in Q(V/d) and one of the following conditions holds.

- D=1

— p=2, D=[I;p; with each p; =3 mod 4, and N [p =[], q; with each g; =1 mod 4
— p=3, D=[I;p: with each p; =2mod 3, and N [p =1, q; with each ¢; =1 mod 3
— The following inequality holds:

[2/7] €D,N/p (%)

s=-12y5] \ fIf(s%-4p) w(szf;p)
0

S+
e p is inert in Q(v/d) with Dp =11, pi, N/p = [1,g; such that one of the following holds.

— p=2, for all i, p; =3 mod 4 and for all j, gj =1 mod 4

—p=3mod4, D=1 and N =p or 2p

Proof. The only part of this special case which does not immediately follow from the theorem
is why we must have D =1 if p # 2 is inert in Q(\/c_l) If m = DN = p then since p | N we
must have D =1 and N = p. Suppose now that m = DN = 2p. Recall that since Bp is
indefinite, if D > 1 then there are at least two primes which divide D. Therefore if D > 1,
we must have D = 2p in contradiction to our assumption that p | N. It follows that D =1

and N = 2p. O

We also note that we obtain results on rational points of X{(N),q, when p | N and

D > 1. These do not seem to appear anywhere in the literature.

Corollary 8.0.3. Let D be the squarefree product of an even number of primes, N a square-
free integer coprime to D, and p | N be a prime. We have XP(N)(Q,) # @ if and only if

either
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D=1, or

p=2, D =TI, p; with each p; =3 mod 4, and N[p =1; q; with each ¢; =1 mod 4 or

p=3, D =TI;p; with each p; =2mod 3, and N[p =TI, q; with each q; =1 mod 3 or

The following inequality holds:

[27] e ()

>

=121 \ /1 (s ~4p) w( e )

S*

>0

To prove Theorem 8.0.1, we will have to make the following definitions.

Definition 8.0.4. Assume that p | N. Let X (N)z, be as in Theorem 5.2.24 and let

m: X > XP(N) be a minimal desingularization, so that Xz, is a regular model for XP(N)q, -

Note that if n | DN then extending the automorphism w, from Definition 5.2.2 to X
makes sense. This is because w, : XP(N) - XP(N) induces a birational morphism X -» X
permuting the components of Xy, . Therefore w,, on X{(N) induces an isomorphism X — X
[Liu02, Remark 8.3.25].

The model X is equipped with a closed embedding ¢’ : X (N /p)r, = & such that 7¢’ = ¢,
the embedding defined in Theorem 5.2.24. Let o be such that (o) = Autz, (Z,2).

Definition 8.0.5. Let Z be the étale quotient of sz2 by the action of w, oo.

Note that if p is inert in Q(v/d) then Z,[\/d] & Z,> and thus the generic fiber of Z is
CP(N,d,m)q,. Therefore Z is a regular model of CP(N,d,m)q, if p is inert in Q(\/d).

We also note that if p is split in Q(v/d), or if p is inert and m = 1, then CP(N,d, m)q, =
XP(N)q,. Therefore, if p is split in Q(\/d), we can consider d’ to be any squarefree integer
such that p is inert in Q(\/E,) and Z’ to be the regular model of CP(N,d',1)q, 2 X (N)q, -

Therefore, we shall obtain our results when p is split as a corollary to our results when p 4+ m.
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We shall organize our results into two sections. In the first, we will consider the case when
p | m. In that case, w,, and thus the twisted action of Galois will permute ¢/(XF (N /p)s,)
and w,c' (X (N/p)r,) on the special fiber. In that case, any F,-rational point must come
from a fixed superspecial point of length greater than one. In the second, we will consider
the case when p + m and we may have to additionally allow for points on ¢/(XF(N/p)r,)-

Note also that if X° denotes the complement of the superspecial points in X, XP(N )ﬁ;p =

(X3 (N/p)g,) Hwpc! (X (N [p)R,)-

8.1 The proof when p|m is inert

Suppose that D is the discriminant of an indefinite Q-quaternion algebra, N, d are square-free
integers with (D, N) =1, m | DN, and p|m is inert in Q(v/d). Fix X and Z as in Definition
8.0.4. If p | m, the action of w,, on the regular model X interchanges ¢/(XP (N /p)r,) and
wyc'(XP(N)g,. Therefore if P denotes an element of Z(F,) then 7(P(Spec(F,)) must lie on
both copies of X’(N/p)r,. This is to say that the base change to F, of 7P is a superspecial
point, say .

Moreover, we have the following.

Lemma 8.1.1. If D, N,d,m,p are as described in the beginning of this chapter and p|m is
inert in Q(\/d), then CP(N,d,m)(Q,) # @ if and only if there is a superspecial Wy p-fied

point x € XP(N)(F,) of even length.

Proof. By abuse of notation, let Frob, = ¢* : Spec(F,) - Spec(F,) where ¢; : F, - F,. Note
that under the bijection from Z(F,) to X(F,), the action P+ P Frob, on Z(F,) translates
to the action of P+ w,, P Frob, on X(F,).

Suppose that CP(N,d,m)(Q,) is nonempty. Then by Hensel’s Lemma [JL85, Lemma
1.1] there must be an element of Z*™(IF,), or rather a smooth point such that P = w,, P Frob,

in X(F,). Since p | m, w,, interchanges (X (N/p)z,) with wye(X7(N/p)g,). A smooth
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fixed point P of w,, o Frob, must therefore satisfy 7(P) = z € X (N)(F,) with x lying in
o(XP(N/p))(F,) and w,c(XP(N/p))(F,). That is, x is a superspecial point.

Suppose there is such a smooth fixed point P. Let ¢ = ¢(z), so that if £ = 1 then
m*x(Spec(F,)) = P and thus P is a singular point. Of course this is a contradiction. If £> 1
then m*z(Spec(F,)) = UZ} C; with C; = ]P’%p and if 7 < j,

1 jg=i+1,1<i</
Ci'CjZ

0 else

By Lemma 5.3.17 x Frob, = wy,(x), so we have w,, o Frob,(x) = Wy () = wy,/,(z). Therefore
by continuity, w,,, fixes each C; and for each i, w,C; = Cy_;. If £ is odd, there are no fixed
components so P(Spec(F,)) must be the unique intersection point of C’%l with C’% , and
thus singular. Therefore, unless ¢ is even we arrive at a contradiction.

Conversely suppose that there is a superspecial point = such that ¢ = ¢(x) is even and
Wpyp() = x. Then we have Ci,...Cy_; fixed by w,,/, as above and w, fixes Cys, so Cyyy is
defined over IF),. Let P, = Cyjo_1nCyjp and P = CyjanCyjai1 be the singular points of XF,, lying
on Uy, and note that w,P, = P,. Therefore the fixed points of Frob,w,, are nonsingular.
There is a smooth fixed point P of w,, o Frob, on Uy and therefore by Hensel’s Lemma,
CP(N,d,m)(Q,) * 2.

O

Theorem 8.1.2. Suppose that D, N,d,m and p are as in Theorem 8.0.1 and p | m is inert
in Q(\/d). Then CP(N,d,m)(Q,) # @ if and only if

ep=2 m=por DN, forallq| D, g=3mod 4, and for all q| (N/2), ¢=1mod 4, or

e p=3mod4, m=p or2p, forall ¢| D either ¢ =2 or g =3 mod 4, and for all q| (N/p),

g=2 orq=1mod4.
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Proof. By Lemma 8.1.1, CP(N,d,m)(Q,) is nonempty if and only if there is a superspecial
Wy, p-fixed point of even length in XP (N )(F,). By Lemma 5.2.25, the QM endomorphism
ring of a superspecial point on X (N)(F,) has discriminant D’ = Dp and level N’ = N/p.
Note that D’N" = DN. By Lemma 5.3.20, there is a superspecial w,,,-fixed point of even

length if and only if

e m/p=1,2,DN/2 or DN and
e for all ¢ | Dp, g=2 or ¢ =3 mod 4 and

e for all ¢ | (N/p), ¢=2 or g=1mod 4.

We shall begin our analysis by applying the top condition first and using the latter two
conditions later. We may immediately see that (m/p) | (DN/p) < DN so m/p # DN. If
m/p = 1 then m = p and either p = 2, or p = 3mod 4 by the second condition. If p = 2,
2| (DN/2) so the second and third conditions say that for all ¢ | D, ¢ =3 mod 4, and for all
q| (N/2), ¢g=1mod 4.

If m/p =2 then m = 2p and we conclude that p = 3 mod 4 by the second condition. If
m/p=DN/2 then DNp/2=m | DN and we conclude that p = 2. O

8.2 The proof when p + m is split or inert

We begin with the following observation regarding cusps, which are points that can only

exist on XP(N)g or CP(N,d,m)g if D =1.

Lemma 8.2.1. If N is square-free and m | N, then w,, fizes a cusp of X}(N) if and only if
m = 1. Therefore if N,d are square-free and p | N is a prime, then C*(N,d,m)(Q,) contains

a cusp if and only if either p is split in Q(~/d) orm = 1.
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Proof. This is proved as part of a stronger theorem of Ogg [Ogg74, Proposition 3| which
shows that even if N is not square-free, the only possible Atkin-Lehner involution on X (N)g
which leaves a cusp fixed is wy. If N is square-free, all cusps are Q-rational [Ogg83, p.290]

and the result follows. O

Lemma 8.2.2. Let D, N,d,m,p be as in Theorem 8.0.1 and suppose p + m is unramified in
Q(V/d). Suppose that CP(N,d, m)(Q,) does not contain a cusp. Then CP(N,d,m)(Q,) # @

if and only if one of the following occurs.

e There is a superspecial Ww,,y-fived point of even length on XP(N)(F,).
e There is a superspecial Wwy,,-fized point of length divisible by three on XP(N)(F,).
o There is a non-superspecial point of CP(N[p,d,m)(F,).

Proof. Recall that the possible lengths of a superspecial point x are 1,2,3,6 or 12 [Vig80,
pp.-146-147], so that if ¢(z) is neither even nor divisible by three then ¢(z) = 1. Let Frob, :
Spec(F,) — Spec(F,) be induced by the p-th power map. Recall also the regular models
X, Z of Definition 8.0.4, and that there is a bijection from Z(F,) to X(F,) and under
this bijection, the action P + PFrob, on Z(F,) translates to the action P ~ w,, P Frob,
on X (Fp). Moreover by Lemma 5.3.17, the action of Frob, on the superspecial points of
XFP is the action of w,. Therefore a superspecial [F,-rational point of Z corresponds to a
superspecial wy,,-fixed point of X (N )7, -

Suppose now that CP(N,d,m)(Q,) is nonempty, or equivalently by Hensel’s Lemma
[JL85, Lemma 1.1] that Z*m(IF,) is nonempty. Suppose further that there are no superspecial
wmp-fixed points of length divisible by 2 or 3. It follows that if P is a smooth fixed point
of Wy, in X(F,), then 7(P) = is not superspecial. If z were superspecial then its length
would be one. It follows that 7=tz = P is not a smooth point. Finally, recall that the non-
superspecial points of X(FF,) lie on exactly one of ¢/(XP(N)(F,)) or w,c(XP(N)(F,)). If
P is w,, PFrob, and lies in XP(N/p)(F,) then P e Z(F,).
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Conversely, suppose first that there is an [F-rational point of Z which is not superspecial.
By the embedding ¢ : X (N /p)r, - X{(N)g,, there is a non-superspecial F,-rational point
of Z. Since XP(N )Fp is smooth away from superspecial points, this F,-rational point lifts
via Hensel’s lemma to an element of CP(N,d,m)(Q,).

Now suppose there is a superspecial wy,,-fixed point x with ¢ = £(x) > 1. It follows that
7 (x(Spec(F,))) = Ul C; with C; = ]P%p and at most two singular points in A5 on each Cj.
Since wy,x Frob, = w,,(z) = z, for all i, w,,C; = w,,,C; = C; by continuity of 7. Therefore

C; defines an F,-rational component of Z5, with at most two singular points. Therefore

Zsm(F,) is nonempty and by Hensel’s Lemma, Z(Q,) is nonempty. O
We now obtain conditions for each of these to occur.

Lemma 8.2.3. There is a superspecial Wy,,-fized point of even length on X(?(N)ﬁp if and

only if one of the following occurs.
1. p=2,m=1, ¢g=3mod 4 for all primes q| D, and g =1 mod 4 for all primes q| (N/2).

2. p=3mod4, 2| DN/p, m=DN/2p, ¢ # 1 mod 4 for all primes q | D, and q # 3 mod 4

for all primes q | (N/p).

3. m=DN/p, p# 1mod4, ¢ # 1mod4 for all primes q | D, and q # 3mod 4 for all

primes q | (N/p).

Proof. By Lemma 5.2.25, if (A, 1) corresponds to a superspecial point z € X (N)(F,) then
End,(0)(A) has discriminant D’ = Dp and level N’ = N/p. Note that D'N’ = DN. By
Lemma 5.3.20, there is a superspecial w,,,-fixed point of even length if and only if all of the

following occur:
e mp=1,2,DN/2 or DN,

e for all primes ¢ | Dp, ¢ =2 or ¢ =3 mod 4,
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e for all primes ¢ | (N/p), ¢=2 or ¢ =1 mod 4.

The proof will be complete once we have individually exhausted each option from con-
dition one and applied conditions two and three to those options. Since p | mp, mp # 1. If
mp =2 then p =2, s0 2 + (DN/p), and m = 1. If mp = DN/2 then p | (DN/2) and thus
p # 2 because DN is square-free. It follows from the second condition that m = DN/(2p)
with p = 3 mod 4. The only remaining case is mp = DN, and the second condition tells us

that p=2 or p=3 mod 4. O

Lemma 8.2.4. There is a superspecial point of length divisible by three in X (N)(F,) fived

by Wy, if and only if one of the following occurs.

e p=3,m=1,g=2mod 3 for all primes q| D, and g =1 mod 3 for all primes q| (N/3).

e p=2mod3, 3| DN/p, m=DN/3p, ¢ # 1 mod 3 for all primes q| D, and q¢ # 2 mod 3

for all primes q | (N/p).

em=DN[p, p# 1mod3, ¢ # 1 mod 3 for all primes q | D, and q # 2mod 3 for all

primes q | (N/p).

Proof. By Lemma 5.2.25, if (A,:) is a superspecial surface corresponding to a point = €
XP(N)(F,) then End,)(A) has discriminant D’ = Dp and level N’ = N/p. Note that
D'N’ = DN. By Lemma 5.3.19, there is a superspecial w,,,-fixed point of length divisible

by three if and only if all of the following occur:
e mp=1,3,DN/3 or DN,
e for all primes ¢ | Dp, ¢ =3 or ¢ =2 mod 3,

e for all primes ¢ | (N/p), ¢=3 or ¢ =1 mod 3.
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The proof will be complete once we have individually exhausted each option from con-
dition one and applied conditions two and three to those options. Since p | mp, mp # 1. If
mp =3 then p =3, so 3 + (DN/p), and m = 1. If mp = DN/3 then p | (DN/3) and thus
p # 3 because DN is square-free. It follows from the second condition that m = DN/(3p)
with p = 2mod 3. The only remaining case is mp = DN, and the second condition tells us

that p=3 or p =2 mod 3. O]

Lemma 8.2.5. There is a non-superspecial IF,-rational point of Z if and only if one of the

following holds. Here T,,, = w,,T, is as in Definition 6.1.1, and acts on HO(X(?(N)FP,Q).

er,N/p(_4) erA,N/p(_S)
w(-4) w(-8)

e mp=2and (p+1)—tr(T,,,) >

Dp.N/p(=41P)

e mp#2, mp#3mod4 and (p+1) - tr(Tnp) > =555

e mp=3mod4 and (p+1) —tr(Tpy) > ED%\(@’;;;W) + eDZJJZﬁ(r;;;np)

Proof. Let Yz, denote the smooth model of CP(N/p,d,m). By Theorem 6.2.6, #Y(FF,) =
(p+1) —tr(Tpy). By Lemma 5.3.17, w, acts as Frob, on the superspecial points, so there
is a superspecial point in Y(F,) if and only if there is a superspecial point fixed by wy,,
in XP(N)(F,). By Corollary 5.3.16, there is a superspecial point = in XP(N/p)(F,) fixed
by Wy, if and only if Z[\/=mp] (or Z[(4] if mp = 2) embeds into End,o)(A) where (A4,¢)
corresponds to z.

We now count the number n,,, of wy,-fixed superspecial points. Suppose that O’ is
an Eichler order O of level N/p in Bp,, g is the unique two-sided ideal of norm mp
in @', and My, ..., M, are right ideals of O’ which form a complete set of representatives
of Pic(D/p,Np). Under Lemma 5.2.25, n,,, is the number of indices i such that M, =
M; ® . Thus [Vig80, p.152|, the number of such superspecial fixed points is the number
of embeddings of Z[\/=mp] (or Z[(4] if mp = 2) into any left order of an M;. If mp =

2 the number of these is eD’;ﬁﬁ({@ + eDiﬁi‘é({s). If mp + 2 and mp # 3mod 4 then the
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enp.N/p(=4mp)
w(-4mp)

eDp.N/p(=mP)
w(-mp)
er,N/p(_4mp)
w(-4mp) ° ]

number of these is . If mp = 3mod 4 then the number of these is +

We note here that if mp = 2 and ep, y/p(=4) # 0 then p = 2, m =1, for all primes ¢ | D,
q =3 mod 4 and for all primes ¢ | (N/p), ¢ =1 mod 4. Therefore by Lemma 8.2.3, there is a
superspecial fixed point of even length which gives rise to an element of CP(N,d,m)(Q,).
Therefore, from the perspective of giving equivalent conditions for the presence of local
points, if mp = 2, we may assume that ep, n/,(—4) = 0 and our condition becomes (p +1) -
tr(Lonp) > %ﬁg—s)' This is to say, (p+1) = tr(Tyny) > %, precisely the condition

for all other m,p such that mp # 3 mod 4.

Theorem 8.2.6. Let D be the discriminant of an indefinite Q-quaternion algebra, N a
square-free integer coprime to D and p | N. Then XP(N)(Q,) is nonempty if and only if

one of the following occurs.
1. D=1.
2. p=2, forall q| D, g=3mod 4, and for all ¢| (N/2), ¢ =1mod 4.
3. p=3,m=1, forall q| D, g =2mod 3, and for all ¢ | (N/3), ¢ =1mod 3.

4. The following inequality holds

12v/p] 6D7N/p(%)

I Y

2_
s=L25) \ fIf(s2-4p) w(s f24p )
s#0

Proof. First we note that if D = 1, then there is a Q-rational cusp by Lemma 8.2.1. Set
m =1 and assume D # 1. By Lemma 8.2.2, X (N)(Q,) is non-empty if and only if one of

the following occurs.

e There is a superspecial w,-fixed point of even length in X (N)(F,).
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e There is a superspecial w,-fixed point of length divisible by three in XP(N)(F,).
e There is a non-superspecial F,-rational point.

By Lemma 8.2.3, there is a w, fixed point of even length if and only if one of the following

occurs.
e p=2 forall ¢g| D, g=3mod4 and for all ¢ | (N/2), ¢ =1mod 4
e p=3mod4 and DN =2p
e DN=pand p=2or p=3mod4

However, if either of the latter two occurs, D =1 in contradiction to our assumption.
By Lemma 8.2.4, there is a w), fixed point of length divisible by three if and only if one

of the following occurs.
e p=3,forall | D, g=2mod 3 and for all ¢ | (N/3), ¢=1mod 3
e p=2mod 3 and DN =3p
e DN=pand p=3or p=2mod 3

Once again, if either of the latter two occurs, D = 1. Suppose now that in addition to
D # 1, there are no superspecial points of length two, so the number of non-superspecial

[F,-rational points on XP(N/p) can be written as

(p+1)-tr(T) - ).

f
A w(72)
Recall now Theorem 6.1.6, the Eichler-Selberg trace formula on H(X§(N/p)g,, Q):

25] epnp (Sr
w()=p+D- > | ¥ M
s==[2p) \ 115(s~1p) w( = )
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Therefore, there is a non-superspecial F,-rational point of X(N/p) if and only if the

following quantity is nonzero.

) ) [2/P) eD7N/p(%) ) erjN/p(%)
() vt s=—L22:\/ﬁJ (ff(§4p) w(szf’fp) flf(z—:4p) w(%”)
B R G o P ) R
s:;Ljé/ﬁJ fIf(s2-4p) w(52;24p) flf(—4p) w(%p)

Now recall that ep nv(A) = h(A) [Typ (1 - {%}) [Tyn (1 + {%}) and f(A) is the conduc-
tor of Ra. Therefore ep, n/p(A) = (1 - {%})GD,N/p(A) and thus ep n/p(A) = eppn/p(A) =
{%}e[),N/p(A). However, consider that f(-4p) =1 or 2, depending on p mod 4. Moreover,

—4p

if p=2 then f(-8) = 1. Therefore, since p | % for all f| f(-4p), {fo} =0.

]

We now find, for infinitely many pairs of integers D and N, infinitely many nontrivial

twists of X (IN) which have points everywhere locally.

Example 8.2.7. Let ¢ be a prime which is 3 mod 4 and consider the curve X}(q). We will
show that if p=1mod 4 is a prime such that (%) = -1 then C'(q,p,q)(Q,) is nonempty for
all places v of Q. Since p >0, C'(q,p,q) 2r Xg(q) and thus C'(q,p,q)(R) + @. We note
that since p = 1 mod 4, Q(./p) is ramified precisely at p. Therefore if £ + pq is a prime,
then ( is unramified in Q(\/p). If £ splits in Q(\/p), then C*(q,p,q) =q, X;(q) and thus
CYq,p,q)(Qe) # 2. If £ is inert in Q(\/D), then C'(q,p,q)(Q¢) # @ by Corollary 6.5.2.
Since p = 1mod 4, (%) = (%) = -1, q is nert in Q(\/p). Therefore by Theorem

8.0.1(b), C*(q,p,q)(Qq) is nonempty. Moreover, (_Tf]) = (%) = -1 and so by Theorem 7.0.1,
CHq,p,0)(Q) * 2.
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Chapter 9

Primes dividing the quaternionic

discriminant

Throughout this chapter we will fix D the discriminant of an indefinite quaternion Q-algebra,
N a squarefree integer coprime to D, a squarefree integer d, an integer m | DN and a prime
p | D unramified in Q(v/d). Let w,, be as in Definition 5.2.2. Let XP(N),q be as defined
in Corollary 5.2.14, and let CP(N,d, m),q be its twist by Q(+/d) and w,,. The purpose of

this section is to prove the following theorem.

Theorem 9.0.1. Suppose that p | D is unramified in Q(v/d) and m | DN. Let p;, q; be

primes such that D[p =T1;p; and N =1, g;.

e Suppose p is split in Q(\/d). Then CP(N, d,m)(Q,) is nonempty if and only if one

of the following two cases occurs [Theorem 9.2.2].

1. p=2, p;=3mod4 for all i, and g; =1 mod 4 for all j

2. p=1mod4, D=2p, and N =1
e Suppose that p is inert in Q(\/d).
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— Ifp|m, CP(N,d,m)(Q,) is nonempty if and only if one of the following four
cases occurs.
1. m=p, p;# 1mod 3 for all i, and q; # 2 mod 3 for all j [Lemma 9.1.3]
2. m=2p and one of epyp n(=4) or epsp n(=8) is nonzero [Lemma 9.1.4]
3. m/p#3mod4 and epy, n(=4m/[p) is nonzero [Lemma 9.1.4]
4. m/p=3mod4 and one of epj, n(=4m/[p) or epy N(=m/p) is nonzero [Lemma
9.1.4]
— Ifp+ m, CP(N,d,m)(Q,) is nonempty if and only if one of the following four
cases occurs [Theorem 9.2.2].
1. p=2, m=1, p;=3mod4 for all i, and ¢; =1 mod 4 for all j
2. p=1mod4, m=DN/(2p), for all i, p; # 1 mod 4, and for all j, q; # 3 mod 4
3. p=2, m=DN/2, p;=3mod4 for all i, and ¢; =1 mod 4 for all i

4. p=1mod4, m=DN/p, for all i, p; # 1 mod 4, and for all j, g¢; # 3 mod 4

As opposed to the case where p | N, all conditions here are determined by congruences.

For completeness, we record the following.

Corollary 9.0.2. Let p;, q; be primes such that D[p =TI;p; and N =TI, g;.

o If p is split in Q(\/d), then CP(N,d,DN) = XP(N) over Q, and XP(N)(Q,) is

nonempty if and only if one of the following two cases occurs.

1. p=2, pi=3mod4 for all i, and g; =1 mod 4 for all j

2. p=1mod4, D=2p, and N =1
o Ifpis inert in Q(\/d) then CP(N,d, DN)(Q,) is nonempty.

Proof. Note that ep, n(-4DN/p) is always nonzero by Theorem 4.1.28. ]
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To prove Theorem 9.0.1, we shall need to work with regular models for X’(N)q, and
CD(N, d, m)Qp.

Definition 9.0.3. Let m: X > XP(N),z, denote a minimal desingularization.

For n | DN, let w,, denote the automorphism of Definition 5.2.2. Note that extending the
automorphism w, from Definition 5.2.2 to X makes sense because w, : X’(N) - XP(N)
induces a birational morphism X -» X permuting the components of &f,. Therefore w, on
XP(N) induces an isomorphism X - X' |Liu02, Remark 8.3.25].

We note also that the components of X (N )Fp are in W-equivariant bijection with
Pic(D/p, N) L1 Pic(D/p, N) by Theorem 5.2.22. The intersection points, which can only link
a component in one copy of Pic(D/p, N) to a component in the other copy of Pic(D/p, N)
are in W-equivariant bijection with Pic(D/p, Np) as in Theorem 5.2.22.

The bijection of the two sets of components with two copies of Pic(D/p, N) is W /(w,)-
equivariant. As explained in Lemma 5.2.25, w, interchanges the two copies of Pic(D/p, N)

The length ¢ of an intersection point z € XP(N)(F,) is given as in Definition 5.2.20.
Therefore if ¢ > 1, 7 (x(Spec(F,))) = Uzl C; with exactly two points of C; singular in X5,
and for all i, C; = IP%F [Ogg85, p.202]. We define the length of a component of XP (N )z, by

the length of the associated element of Pic(D/p, N') as in Definition 5.2.20.

Definition 9.0.4. Let o be such that (o) = Autg, (Z,2). We denote by Z)z,, the regular model

of CP(N,d, m)q, obtained as the étale quotient Z of Xz by the action of w,, oo.

Note that if p is inert in Q(v/d) then Z,[\/d] & Z,> and thus the generic fiber of Z is
CP(N,d,m)q,. Therefore Z is a regular model of CP(N,d, m)q, if p is inert in Q(v/d).

We also note that if p is split in Q(\/d), or if p is inert and m = 1, then CP (N, d, m)q, =
XFP(N)q,- Therefore, if p is split in Q(\/d), we can consider d’ to be any squarefree integer
such that p is inert in Q(\/E/) and Z’ to be the regular model of CP(N,d',1)q, 2 X (N)q,-

Therefore, we shall obtain our results when p is split as a corollary to our results when p + m.
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If m = p, there is a morphism 7’ from Z to the curve M(p ny/z, of Theorem 5.2.22,
given by possibly blowing down components. We shall begin by discussing this case and
more generally the case when p | m. As with the case p | N, we shall obtain results on
XP(N)(Q,) as a corollary to the case when p + m. In doing so, we recover Corollary 9.2.3,
giving a new proof a theorem of Jordan-Livné on XP(1)(Q,)[JL85, Theorem 5.6] and its

extension by Ogg [Ogg85, Theoréme,§1].

9.1 The proof when p|m

We begin with an elementary lemma on quadratic twists of IP’% .

Lemma 9.1.1. Let w: Py — Py be an F,-rational involution. Let ¢, :Fp - E, denote the
p p
p-th power map. Then the set of points P : Spec(F,) - P! such that wP¢* = P contains at

most two points such that P¢; = P.

Proof. The set of points P such that P = wP¢] = wP has cardinality at most two because

w? is the identity but w is a nonidentity automorphism of P!. O]

This lemma can be restated as follows. Let M(p ny denote the Mumford curve of Theorem
5.2.22. Let w be an [F)-rational involution which sends a component C' = P]%p of (M(p,n))F,
to itself. Let T" be the twist of C' by w and F,.. Then at most two points of C'(F,) lie in

T(F,). We can now state the following.

Lemma 9.1.2. Let p | D be unramified in Q(\/d) and p | m. Then CP(N,d,m)(Q,) is

nonempty if and only if one of the following occurs.

(1) p=m and there is some component of X(’):’(N)Fp with length greater than one

(2) p#m and there is a component of XOD(N)E) fized by W,y
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Proof. Let Frob, = ¢7 where ¢; : Fp - Fp is the p-th power map. Fix a bijection from Z(Fp) to
X (F,) under which the action of P ~ P Frob, is translated to the action of P + w,, P Frob,,.
By Lemma 5.2.25, the action of Frob, on the components and intersection points of Zg ) is
given by wpw, = wy,/,. Therefore a component or intersection point of Zﬁp is defined over
IF,, if and only if that component or intersection point is w,,-fixed.

If p = m this is the obvious extension of a result of Rotger-Skorobogatov-Yafaev [RSY05,
Proposition 3.4|. Since m/p = 1 and wy is the identity, all components and intersection points
are [F)-rational. This sounds great except that there are generically p + 1 F,-rational inter-
section points on each component. Namely, let y be a component and {z;} the intersection

points on that component, so that ¢(z;) | ¢(y) for all  and [KR08, 3.6]

L _p+l
zZ-:f(fﬂi) ()’

It follows that if £(y) = 1 then there are precisely p + 1 intersection points x;, and thus
no smooth F,-rational points on y. Therefore if /(y) =1 for all components of Z5 Zsm(F,)
is empty and thus by Hensel’s Lemma, CP(N,d,m)(Q,) is empty.

On the other hand suppose that ¢(y) > 1. If ¢(x;) =1 for all 4, then

+1

p+ —g Z

= #{z:}.

’L

Clearly then, there are p + 1 — #{z;} smooth F,-rational points on y which lift to points of
CP(N,d,m)(Q,) by Hensel’'s Lemma.
Suppose there exists some x which maps Spec(F,) to y c X(?(N)Fp and ¢(z) > 1. Then
7*(x(Spec(F,))) = Ue(m) ! C; with C; 2 ]P>1 for all j. In & , w,Cj = Cy(z)-; by continuity so
Wy,pCj = Cj. It follows that C; defines an Fp—rational component of ZFP containing at most
two singular points of Zg . Therefore, there is a smooth point of Z(F,) coming from Cj.

Now suppose that p | m but p # m and recall the curve Mz, of Theorem 5.2.22. Let 7’ :
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N — M be a minimal desingularization, so that N, is the twist of Zg by [F,,» and wy,,. Since
M # P, Wy is not the identity. We may apply Lemma 9.1.1 to say that CP(N,d,m)(Q,) is
nonempty if a component of N is fixed by w,,/,. Suppose that a component of NFP is fixed
by wyp (under the isomorphism Nj = Zgz = A5 ). Therefore there is a component y of
ZF,, which is F)-rational. Since all intersection points are rational, y contains the image of a
smooth [F), rational point. This is because at most 2 singular intersection points stayed [F,-
rational. Since there is a smooth point of Z(F,), CP(N,d, m)(Q,) is nonempty by Hensel’s
Lemma. Finally we note that if a component C' of Xﬁp is fixed by w,,/, then so is its image
7(C). If 7(C) is a component of XOD(N)EJ, we are done. If 7(C') is an intersection point
of two components Cy,Cy of XP(N )Fp then w,,, either fixes both of them or interchanges
them. However, Theorem 5.2.22 tells us that under the bijection between components of
X()D(N)Fp and Pic(D/p, N) 11 Pic(D/p,N), C; must lie in one copy and Cy in the other.
Since these bijections are W /{w,)-equivariant, w,,/, cannot interchange C; and C5 and must

therefore fix them.

]

Lemma 9.1.3. If p=m and p is inert in Q(\/d), then CP(N,d,m)(Q,) # @ if and only if

one of the following occurs.

(1) For all primes q | (D/p), either ¢ =2 or g =3 mod 4, and for all primes q | N, either

q=2 orq=1mod4.

(2) For all primes q | (D/p), either ¢ =3 or g = 2mod 3, and for all primes q | N, either

g=3 org=1mod 3.

Proof. By Theorem 4.1.28, condition (1) is equivalent to epy, v(—4) # 0 and condition (2)
is equivalent to ep, n(=3) # 0. Recall that the possible lengths of a component are 12

if (D/p,N) = (2,1), 6 if (D/p,N) = (3,1), and 1,2 or 3 otherwise [Vig80, Proposition
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V.3.1]. Therefore a component corresponding to [I] has length divisible by 2 if and only
if Z[(4] = O;(I) and has length divisible by 3 if and only if Z[(s] < O;(I). Therefore
ep/p.n(—4) # 0 if and only if there is a component of XP (N )5, of length divisible by two
and epy, nv(—3) # 0 if and only if there is a component of XP (N )7, of length divisible by
three. This is to say that one of the two conditions of the Lemma occurs if and only if there
is a component y of X(?(N)E) such that ¢(y) > 1. But then by Lemma 9.1.2 there is such a

component if and only if CP(N,d, m)(Q,) is nonempty. ]

Lemma 9.1.4. If p| m and p #+ m, then CP(N,d,m)(Q,) is nonempty if and only if one of

the following occurs.
e m =2p and one of ep, n(—4), epp,n(=8) is nonzero.
e m/p#3mod4 and eps, n(—4m/p) is nonzero.
e m/p=3mod4 and one of eps, n(=4m/[p) or eps, n(—m/[p) is nonzero.

Proof. Suppose that p|m and p # m. After Lemma 9.1.2, CP(N,d, m)(Q,) is nonempty if
and only if a component of X (N )Fp is fixed by w,y,/,. After Lemma 5.2.25, such a component
corresponds to an element of Pic(D/p, N). After Lemma 5.3.16, such a component is fixed
by Wy, if and only if there is an embedding of Z[\/~m/p] (or Z[(4] if m/p = 2) into the
QM endomorphisms of (A, ). Such an embedding of an order R exists if and only if there
is an optimal embedding of an order R’ > R. In this case, the only orders which contain
Z[\/-m/p] are itself or Z [HQM] if m/p =3 mod 4. Respectively, their discriminants are

—4m/p and —m/p, so the result follows from Theorem 4.1.28. O

We close by noting that if m/p = 1 then m/p # 3 mod 4. Furthermore, eps, n(-4) # 0
if and only if for all ¢ | (D/p), either ¢ = 2 or ¢ = 3mod 4 and for all ¢ | N, either ¢ = 2
or ¢ = 1mod4. Therefore, there is a component of XP (N )Fp of length divisible by two.

Therefore, we absorb that condition of Theorem 9.0.1 into the case that m/p # 3 mod 4.
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9.2 The proof when p + m

Once more, we shall use Hensel’s Lemma to determine whether CP (N, d, m)(Q,) is nonempty
in terms of XFP' If p + m then the action of Frob, on the components and intersection points
of ZE, = &g, coincides with the action of w,,. However, by Lemma 5.2.25, the action of wy,,

on XP(N)z fixes no component. In fact, we conclude the following.
0 F,

Lemma 9.2.1. Suppose that p + m is unramified in Q(\/d). Then CP(N, d,m)(Q,) is
nonempty if and only if there is a superspecial Wy,,-fived intersection point x of even length

m X()D(N)?p

Proof. If CP(N,d,m)(Q,) is nonempty, then by Hensel’s Lemma there is a smooth point of
Z(F,). Therefore, there is a smooth point P of X (F,) fixed by P ~ w,, P Frob,. By Lemma
5.2.25, the action of w,,, on XOD(N)FP fixes no component. Therefore, 7(P) = x is the
intersection point of two components. Since P is smooth, 7*(z(Spec(F,))) # P(Spec(F,)).
Therefore ¢ = {(z) > 1 and 7*(x(Spec(F,))) = Ul C; with C; = P%p. Since wy,,(z) = z,
WpCi = Cy—;. Therefore, the only component which could be fixed by w,y, is Cy,. If such a
component exists, then £ must be even. Since P(Spec(F,)) € C; for some 4, there must be a
fixed component and thus ¢ must be even.

Conversely, if there is a superspecial w,,,-fixed intersection point = of even length then
7 (2(Spec(F,))) = UZ{ Ci. Since w,,,,Ceja = Cyja, there is a component of Zg which is defined
over IF,,. It follows that there is a smooth point in Z(F,) and therefore CP(N,d,m)(Q,) is

nonempty. 0

Theorem 9.2.2. Ifp + m, CP(N,d,m)(Q,) is nonempty if and only if one of the following

occurs.
1. p=2, m=1,¢q=3mod 4 for all ¢ | (D/2), and ¢ =1mod 4 for all ¢| N.

2. p=1mod4, m=DN/(2p), g# 1 mod4 for all q| (D/p), and ¢ # 3 mod 4 for all q| N.
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3. p=2,m=DN/2, g=3mod 4 for all q| (D/2) and g=1mod 4 for all q| N.
4. p=1mod4, m=DN/p, , q#1mod4 for all q| (D/p), and ¢ # 3mod 4 for all ¢ | N.

Proof. By Lemma 9.2.1, CP(N,d, m)(Q,) is nonempty if and only if there is a superspecial
wpmp-fixed intersection point of even length. By Corollary 5.3.20, this can occur if and only

if all of the following occur.
e mp=1,2,DN/2 or DN.
e for all ¢ | (D/p), either g =2 or ¢ =3 mod 4

e for all ¢ | Np, either g=2 or ¢=1mod 4

Since p | mp, mp # 1. If mp = 2 then m =1 and p = 2. This is the first case of the
Theorem. If mp = DN/2 then p # 2 and since p | Np, we must have p = 1 mod 4. Since
m = DN/(2p) and p = 1 mod 4, this is the second case of the Theorem. If mp = DN then
m = DN /p and either p =2 or p = 1 mod 4. These are respectively the third and fourth cases
of the Theorem. ]

Corollary 9.2.3. Let D be the discriminant of an indefinite Q-quaternion algebra, N a
square-free integer coprime to D and p | D. Then XP(N)(Q,) is nonempty if and only if

one of the following occurs.
e p=2 g=3mod4 forall q| (D/2) and ¢=1mod 4 for all ¢| N
e p=1mod4, D=2p and N =1

Proof. If p =2 we are at the first case of Theorem 9.2.2. We cannot have p = DN for any p
since p | D and thus D is divisible by at least two primes, so the third and fourth cases of
Theorem 9.2.2 cannot occur. If DN = 2p with p = 1 mod 4 then by the same reasoning we
must at least have (2p) | D, but then D =2p and N = 1. ]
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Finally we give a family of examples of twists of XP(N) which have points everywhere

locally.

Example 9.2.4. Let q be an odd prime, consider the curve ng(l) and let g be its genus. Let
p =3 mod 8 such that (%p) = -1 and for all odd primes { less than 4g?, (_7?”) =-1. Consider
the twist C?4(1,-p.2q) of XJ%(1).

Note that since p = 3 mod 8 and (%p) = -1, C%(1,-p,2¢)(Q2) and C*(1,-p,2¢)(Q,)
are both nonempty by Corollary 9.0.2.

Since (_Fp) = -1 and p = 3 mod 4, (%) =-1. Since p =3 mod 8, (‘7}) =-1 and (%) =-1.
Therefore (_T%q) = -1 and (%p) = (g) = —1. Since we already had <%) = -1, we may apply
Theorem 7.0.1 to say C?1(1,-p,2q)(Q,) # @.

Let £ + 2pq be a prime. If £ > 4g* then we may apply Theorem 6.0.1 to see that
C%(1,-p.2q)(Qq) is nonempty. If ¢ < 4g* then we may apply Corollary 6.3.2 to see that
C%(1,-p,2q9)(Qy) is nonempty.

Finally, since —p < 0, C%1(1,-p,2q) #r ng(l), the latter of which does not have real
points [Cla03, Theorem 55]. Therefore (X %(1)/wy,)(R) # @ if and only if C?2(1,—p,2¢)(R)
is monempty. But then by Theorem 4.1.28, there is an embedding of Z[\/-2q] into any

mazimal order in By, and thus ng(l)/wgq has real points [Ogg83, Theorem 3.
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Chapter 10

A Worked Example: X((14) twisted by

W14

Let d be a squarefree integer and let C''(14,d,14),q denote the twist of X((14) by w4 and
Q(\/d). As shorthand, we may refer to this curve as C1(14,d) or even C(14,d).

We note that since the genus of X((14) is one, the genus of C'(14,d) is also one for all d.
This does not necessarily mean that C'(14,d) is an elliptic curve, as it may lack Q-rational
points. We shall however study a family of squarefree integers d such that C(14,d) is an
elliptic curve, contingent on a well-known conjecture on ranks of elliptic curves. In fact, we

will show the following.

Theorem 10.0.1. Assuming Conjecture 10.4.1, if p is a prime congruent to one of 17,33
or 41 mod 56 then C'(14,p) has infinitely many Q-rational points, and in fact is an elliptic

curve of rank one over Q.

We will also give applications of this theorem to the inverse Galois problem.
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10.1 Local Points

To give points in C'(14,d)(Q), we will first establish some basic results on local points. In

fact we will establish basic results for local points on C''(2q,d,2q) for ¢ = 3 mod 4.
Lemma 10.1.1. If D=1, CP(N,d,N)(R) + @.

Proof. If d > 0, then C'(N,d, N) g Xo(N) which has cuspidal real points. If d < 0, then
Eichler’s embedding theorem states that /=N < Og(NN) and so by Ogg’s theorem [Ogg83,
Theorem 3| there are real points on Xo(N)/wy and thus on C'(N,d, N). O

Lemma 10.1.2. If p + 2¢ is unramified in Q(~/d) then C1(2q,d, 29)(Q,) is nonempty.

Proof. Assume that p + 2¢ is unramified in Q(\/a), which is to say that p is either split or
inert. If p is split in Q(v/d) then C(2q, d, 2q) ~q, X (2¢) and we know that X (2¢)(Q,) # @.
If p is inert in Q(v/d) then we may apply Corollary 6.3.2 to find C1(2¢,d,2¢)(Q,) *+ @. [

Lemma 10.1.3. Ifp = 2 is unramified in Q(v/d), C1(2q,d,2q)(Q>) is nonempty if and only
d

fl=]=1.

v (2)

Proof. If (g) =1, then by Theorem 8.0.1 (a), C'(2¢,d,2q)(Q2) is nonempty. If (g) =-1
then by Theorem 8.0.1 (b)(ii), C*(2¢,d,2q)(Qz2) is empty since ¢ # 1 mod 4 and in terms of

that theorem, g = N /2. ]
Lemma 10.1.4. If q is unramified in Q(~v/d), C*(2q,d, 29)(Q,) is nonempty.

Proof. If (g) = 1, then by Theorem 8.0.1 (a), C*(2¢,d,2q)(Q,) is nonempty. If (é) =-1
q q
then by Theorem 8.0.1 (b)(ii), C*(2¢,d,2¢)(Q,) is nonempty since Dg = ¢ = 3 mod 4 and

N/g=2. O

Lemma 10.1.5. If p is ramified in Q(\/d) and (%q) = -1 then C1(2¢,d,2q)(Q,) #* @ if and

only if (%p) =1 if and only if (%1) =-1.
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Proof. This follows from Theorem 7.0.1. [

Theorem 10.1.6. Suppose that d = 1 mod 8 is divisible only by primes p such that (%) =

(%) = 1. Then for all places v of Q, C'(2q,d,2q)(Q,) is nonempty. In particular,

C(14,d)(Qy) # @ for all places v of Q.

Proof. Recall that d = 1 mod 8 if and only if 2 is unramified in Q(v/d) and (%l) = 1. Since
(g) =1, CY(2¢,d,2¢)(Q,) # @ by Lemma 10.1.3. Moreover p is ramified in Q(v/d) if and
only if p | d. For all such p, we have C1(2¢,d,2¢)(Q,) # @ by Lemma 10.1.5. Since ¢ is
unramified in Q(V/d), C1(2¢, d, 2¢)(Q,) # @ by Lemma 10.1.4. By Lemma 10.1.2, if p + 2¢ is
unramified in Q(v/d), C'(2¢,d,2¢)(Q,) # @. Finally by Lemma 10.1.1, C*(2¢,d, 2¢)(R) #+ &

and the result follows. O
Definition 10.1.7. If p is an odd prime, then p* = (=1)®-1/2,
Note that Q(+/p*) is ramified precisely at the prime p.

Corollary 10.1.8. Suppose that p is a prime such that (%) =1 and (‘77) = —-1. Then

C(14,p*)(Q,) is nonempty for all places v of Q.

Proof. Since (%) =1, p = £+1 mod 8. Therefore p* = 1 mod 8 and we may apply Theorem

10.1.6. The result follows. O

10.2 Jacobians of Twists

As we have obtained conditions for C'(14,p*) to have points everywhere locally, we would
like to put that information together and discover global points. Note that as C'(14,p*) is
a genus one curve over (Q with points everywhere locally, there exists some elliptic curve
E)q such that C'(14,p*) is an element of III(£, Q). If we can show that III(£,Q) is small
enough, we can show in fact that C'(14,p*) represents the identity element of III(F,Q), or

equivalently that C'(14,p*)  E. We now explicitly determine E, := Jac(C(14,p*)).
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Lemma 10.2.1. Let C' be the hyperelliptic curve of genus one given by the model
y2 = a4a:4 + a3x3 + CLQZEZ +a1x + agp,

and let Cy denote the twist of C' by the hyperelliptic involution, thus given equally by the

model

y? = dagx* + dagz® + dasz® + dayx + dag,

or

4

dy? = auxt + a3z + asx® + a1 + ay.

Then

1. the Jacobian of C is given by the model

y? = 423 — x(agay — 4ajasz + 3a3) — (apazay + 2a,a2a3 — agas — asat — al)

2. the Jacobian of Cy is given equally by the model
y? = 42 — 2d*(apay — 4aras + 3a3) — d*(agasay + 2a,aza3 — agas — agat — a3)

or

dy? = 423 - x(agay — 4ayas + 3a3) - (apasay + 2a1aza;3 — agas — asa; — as)

In particular the Jacobian of the twist of C' by Q(\/E) and the hyperelliptic involution is
the twist of the Jacobian of C by Q(\/d) and the elliptic involution.

Proof. Let f(z) = asx* + aza® + axa® + a1 + ag and define I(f) := apay — 4ara3 + 3a3 and
J(f) := apazay + 2a1asa3 — apa3 — aga? — a3. The result of An et al. [AKM*01, §3.2] is that

the Jacobian of the curve over Q given by y? = f(x) is an elliptic curve over Q. Precisely, it
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is given as y? = 4a3 - I(f)z - J(f).

Recall now that the curve over Q given by dy? = f(x) is isomorphic to the curve over Q
given by y2/d = f(x). The isomorphism is given by the change of variables (z,y) ~ (z,y/d).
Therefore the curve over Q given by dy? = f(z) is isomorphic to the curve given by y? = df (z).
Note now that I(f) is a quadratic form in the coefficients of f and J(f) is a cubic form in
the coefficients of f. Therefore I(df) =d?I(f) and J(df) = d®>J(f). The change of variables
(z,y) ~ (x/d,y/d?) gives the change of models in (2). O

Gonzalez [GR91] found equations for all hyperelliptic modular curves of genus g > 0, and
moreover determined when the Atkin-Lehner involutions are hyperelliptic. In particular the

hyperelliptic model for (Xo(14),wy4) is

y? =2t — 1423 + 1922 — 14z + 1.

We verify that for the hyperelliptic curve (Xo(14),w14), (I, J) = (300,8158). Therefore,
for E,, (I,J) = (300(p*)?%,8158(p*)?). Recall now that since X,(14) possesses exactly one Q-
rational two torsion point, so does £,. We collect our results and some convenient Weierstrass

forms for E, in the following.

Corollary 10.2.2. The elliptic curve E, can be recognized as the standard quadratic twist

of Xo(14) by p*. In particular we can write down its short Weierstrass model

y* = 2% + 5805(p*)x — 285714(p*)?

This elliptic curve has exactly one 2-torsion point over Q and when we shift that point

to (0,0) we have the model

y? =23+ 117(p*)z? + 10368(p*)*x.
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10.3 Two Descent and Shafarevich-Tate Groups

Now that we’ve acquired local data about C'(14,p*), we need to use some Galois cohomology
to generate some global data. Since it has points everywhere locally, C'(14,p*) corresponds
to a cohomology class £ which is an element of III(Q, £,). We can even show that it is an
element of I11(Q, E,)[2] as follows.

In the previous subsection we saw C(14,p*) as a curve whose Jacobian is actually £, so
¢ is not just an element of H1(Q, Aut(Xo(14))) = H(Q, Aut(E,)) but in fact an element of
H'(Q, E,). Moreover since C(14,p*) = X((14) = E, over Q(,/p) any cocycle representing §
factors through the quotient Gal(Q/Q) — Gal(Q(y/P")/Q). Thus the support of any such
cocycle is the support of the induced cocycle Z/2Z — E,. However, the cocycle condition
mandates that two-torsion elements be taken to two-torsion elements, hence ¢ is in the image
of HY(Q, E,[2]), and thus H*(Q, E,)[2].

We wish to show that III(E,, Q)[2] is trivial for each p in our congruence classes. To do
this we recall for any isogeny of elliptic curves ¢ £ - E’ the Kummer sequence 0 - E[¢] —

E - E’ - 0 and the induced sequence

E'(Q)

'~ YEQ)

We are of course primarily interested in the case where ¢ = [2], but we are also interested
in the case where ¢ is the isogeny given by modding out by a point of order 2. In this
case if we let ¢ be the dual isogeny, ¢¢ = ¢ = [2]. The process of putting these together is
classically known as descent via two-isogeny [Sil92, Remark X.4.7|, expressed in the following

exact sequences:
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0

!
E'[](Q)

H(E2](Q)NE'[¢](Q)
!

0 — L - Sely(Q.E) - LI(Q,E)[¢] - 0

|

0 - Za - Selb(Q,E) - II(Q,E)2] - 0
J

0 - Q) ~ Selz(Q,E") - HII(Q,EN[4] - 0

Moreover, elements of Sel,(Q, E') and Sel3(Q, £) are readily described as hyperelliptic
degree 2 covers of E, E’. These correspond to squarefree elements of Q with zero valuation
outside the primes dividing 200 and the primes of bad reduction. We will refer to this set of
primes as S and these squarefree elements as Q(.5,2).

For an elliptic curve in this particular Weierstrass form, Silverman [Sil92, Proposition
X.4.9| gives a very explicit description of the principal homogeneous spaces in the image of
Q(S,2) = HY(Q, E[6]; ).

For d e Q(S,2) and E = E,,

Cq:dw? =d* - (2)(3*)(13)(p)(d)2* = (31) (p)*(7°) 2"

Here S is the set of archimedean places, places dividing 2 and the primes of bad reduction
for E,. For this S, the classes of cocycles unramified at S, HY(Q, E,[¢];5) 2 Sel,(Q, E)

where ¢ is the isogeny with kernel generated by the rational 2-torsion.
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Moreover, we can make the change of variables z — z/3 to get
Ca:dw? = d* - (2)(13)(p*)(d)2* - (p")*(7°) 2",

We will now determine which of these C; have rational points.

Lemma 10.3.1. On a hyperelliptic curve of even degree

Y2 = Qg™ + Aop 1 2P+ T+ ag

there are (two) rational points at infinity if and only if as, is a rational square.

Proof. A point at infinity is the a point on curve with x = 0 after the change of coordinates
x ~ 1/x. To have this make sense, we have to make the additional substitution y — z"y.

When we do this substitution and set x = 0 we have the equation y? = as, ]

First we work with Sel,(Q, E,,). Recognize that Q(S,2) = (-1,2,7,p). The leading term

of one fy(2) such that w? = f,;(z) determines Cy is _3123272

. By our lemma, C; has rational
points at infinity precisely when d = -7, so we have an automatic element of the Selmer
group which maps to zero in III.

We may immediately remove 2 from consideration. Consider the Newton polygon of fs(2)
over Q, for Cy : w? = 2 - 26p*z2 - 3Bp224. Tt is a single segment of slope —1/2. Therefore
f2(z) = 0 has no roots in Qy. Therefore Cy has no points with w = 0. If w # 0 multiply the
equation by 2. Taking vy of both sides of 2w? = 4 — 52p* 22 — 343p2z* yields 1 + 2vy(w) > 0
if vo(2) > 0. If va(z) > 0 then 1+ 2v9(w) = 2, which can’t happen. If vy(z) = 0 then
1+ 2v9(w) = 0, which also can’t happen. Thus there are no 2-adic points on Cy and thus it’s

not part of the Selmer group. Moreover, these same methods show that if 2 | d then Cy has

no 2-adic points.
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For d = 7, we can look p-adically and see there are no points when w = 0 by studying
the Newton polygon of f;(z) over Q; (recall that <IZD) = —1). Then if v,(2) >0, 2v,(w) =1,
which can’t happen. Thus we may also remove 7 from consideration.

For d = -1 we use a careful application of Hensel’s Lemma due to Birch and Swinnerton-
Dyer on the solubility of such hyperelliptics in Q. Note as we apply this that we show along

the way that if p =1 mod 8, there are no Q, points for d = —p.

Lemma 10.3.2 (BS-D,Lemma 7). Let (xg,y0) € Z* be a solution to y* = Py(x) mod 2"
and let | = va(Py(x0)) and m = va(Pj(x0)). Then there exists a 2-adic solution (Xo,Yy) =

(z0,yo) mod 2™ if one of the following occurs:

Py(xo) is a 2-adic square

n>mandl>m+n

n>m andl=m+n-1 andl even

n>m andl=m+n-2 and l even and%zlmodél

If one of the following occurs, n is too small to be conclusive:
e m>n andl>2n

em>nandl=2n-2 and%ﬁ”o)zlmodll

If none of the above occurs, there are no such 2-adic solutions.

Let n = 2 so we are working mod 4. We have solutions for o = 1,3 so Py(zg) = 28 =
(22)(7) mod 32. Thus [ = 2 and similarly m = 3, moreover Py(z()/4 =7 mod 8 so Py(xg) is

not a 2-adic square. Thus we have shown that if p =1 mod 8, Sel,(Q, E,) < {1,-7,p,-Tp}.
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We also consider Sel3(Q, £}). Recall that £} is y* = % - 26px® - 343p*z whose primes
of bad reduction are 2,7 and p so Q(S5,2) = (-1,2,7,p). The principal homogeneous spaces

there are of the form

Cy: dw? = d* - 26pdz? + p* - 23 -672*

None of these principal homogeneous spaces have points at infinity. If d < 0, there are
no R-points. The same 2-adic Newton polygon argument carries over verbatim for 2 | d

and for d = 7 the same valuation argument carries over. Thus # Sel3(Q, £})) < 3 and so

—

dimy Selz(Q, E}) < 1. Then we note this implies rank(£}(Q)) < 1 and dim, IIT(Q, E,)[¢] < 1.

10.4 The L-function and the parity conjecture

It follows from work of previous sections both that rank(E,(Q)) < 1 and dim, I1I(Q, E,)[¢] <
1 since we already know that E,[¢](Q) # (0). We note now that X,(14) has rank zero and
the sign of the functional equation for its L-function is +1. Therefore [Cla07, Theorem 3|,
the sign in the functional equation of L(E,,s) is —1 precisely when p = 1 mod 4, as is our
case here.

We now make use of the following weaker form of the Birch and Swinnerton-Dyer con-

jecture.

Conjecture 10.4.1 (The Parity Conjecture). The order of vanishing of L(E,,s) is congru-

ent to the parity of the rank of E,(Q) modulo two.

Assuming this, we have rank(£,(Q)) = 1 and III(Q, E,)[¢] = (0). To get our result,

we need III(Q, E,)[2] = 0. Moreover since isogenies preserve the rank of an elliptic curve,

—

E7(Q) has rank one and III(Q, E))[¢] = (0).

Theorem 10.4.2. Assuming the parity conjecture, II(Q, E,)[2] = 0 and thus E, = C(14,p)

for p=17,33,41 mod 56. Moreover, in that case E, is an elliptic curve of rank one.
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Proof. If the parity conjecture is true, then E, has rank one. It follows that III(Q, E,)[¢] =

—

I(Q, E;)[¢] = (0). We may then apply the exact sequence [Sil92, Proposition X.6.2]

0-1I(Q, E)[¢] -~ II(Q, E)[2] -~ TI(Q, E")[¢]

to obtain that III(Q, E,)[2] = (0). It follows then, since C(14,p) defines a cocycle in
I(Q, E,)[2] which is trivial according to whether C'(14,p) = E, or not, that C(14,p) = E,,

an elliptic curve of rank one. O

10.5 An application to the inverse Galois problem

Recall the following theorem of Shih.

Theorem 10.5.1 (K.-y. Shih, 1974). Suppose p is an odd prime such that either (%) , (§)

p

or (%) =—1. Then there exists a Galois extension L/Q such that Gal(L/Q) = PSLy(Z/pZ).

This was accomplished by studying twists of Xo(N) by Q(v/p*) and wy where Xo(N) has
genus zero. In particular, if N € {2,3,7} then there are rational points on C*(N,p*, N) when
(%) = —1. The latter condition guarantees that a twist of the full p-torsion representation of
the universal elliptic curve over all but finitely many points of Xy(NV) is regular. Therefore
by Hilbert’s Irreducibility Theorem, this descends down to Q.

In his “Topics in Galois Theory” [Ser08|, Serre proposed a complement to Shih’s theorem
where we can relax the condition that C*(N,p*, N) is P! to the condition that C*(N,p*, N)
is a curve with infinitely many rational points. This was used to show that, contingent on
the parity conjecture, N =11 or 19 can also be used [Cla07].

Note however that for all N e {2,3,7,11,19}, there is already a wy-fixed point in
Xo(N)(Q) and these are the only N for which this can occur. The following shows that this

is not an obstacle to generating Galois groups.
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Corollary 10.5.2. Assuming the parity conjecture, if p is a prime congruent to one of 17,33

or 41 mod 56 then PSLy(Z/pZ) is a Galois Group over Q.
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