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Fixing Definitions

According to class on September 19th, an elliptic curve E over a
field K is defined to be a nonsingular projective plane algebraic
curve defined by an affine Weierstrass Equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We shall in this talk consider Elliptic Curves to be a point at
infinity plus the set of zeros in K2 of a Weierstrass equation as
above, unique up to a change of coordinates

x = u2x′ + r, y = u3y′ + u2sx′ + t,
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Fixing Definitions

We will find u, r, s and t in K, u 6= 0 and we further must have the
discriminant

∆(E) = ∆(a1, a2, a3, a4, a6) 6= 0.

Equivalence of the two definitions is found in [AEC] as Theorem
III.3.1, but that requires The Riemann-Roch Theorem, an
equivalence of categories proven in Hartshorne and other heavy
machinery. Since we don’t use the fact that a Weierstrass equation
in fact defines a “curve” in this talk or really anything besides the
affine geometry of a Weierstrass Equation, it will go unproven here.
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Fixing Definitions

Our concern will be curves defined over fields with a given discrete
valuation v.

Definition
A Discrete Valuation v on a field K is for us, a group
homomorphism

v : K× � Z

such that v(a + b) ≥ min{v(a), v(b)}.
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Fixing Definitions

Our valuation v gives us the set

R = {r ∈ K× : v(r) ≥ 0} ∪ {0},

which we call the valuation ring, the set

p = {r ∈ K× : v(r) > 0} ∪ {0},

which we call the valuation ideal and the residue field k = R/p. For
the sake of being direct, we will refer to reducing an elliptic curve
at v although it is equivalent to reducing at p as Silverman does.
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Fixing Definitions

Since R is a PID, we can write each ai in reduced form with
respect to (π) = p and have a well-defined LCM . Thus we make
the change of coordinates x = u2x′, y = u3y′ with
u = LCM(n1, . . . , n6) where ni is the numerator of ai, so we can
assume each ai ∈ R. Therefore the reduction map R → R/(π)
gives us an elliptic curve over R/(π) defined by the Weierstrass
equation where ai is replaced by the class of ai mod π as long as
v(∆) = 0.
As discussed in class, though, there is some ambiguity in this
reduction map from the class of elliptic curves over K to the class
of elliptic curves over R/(π), so the map must be refined to be
defined using only a minimal Weierstrass equation.
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Fixing Definitions

Definition
A minimal Weierstrass equation is a Weierstrass equation for an
elliptic curve where v(∆(E)) is minimal in Z and ai ∈ R. This
equation is unique up to the standard change of coordinates

x = u2x′ + r, y = u3y′ + u2sx′ + t,

Where u ∈ R× and r, s, t ∈ R.
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Types of Reduction

To understand what an Elliptic Curve can reduce to, we consider
Weierstrass equations over a general field k. If ∆(E) = 0, we will
say that the set of solutions to the Weierstrass equation
(x, y) ∈ k2 together with the point at infinity is a Singular Curve.

This terminology makes sense when we consider the definition of a
singular point (x0, y0) of a plane curve f(x, y) = 0 to be a point
where ∂f/∂x(x0, y0) = ∂f/∂y(x0, y0) = 0. It turns out that
∆(E) = 0 if and only if we get a singular point among our
solutions to the Weierstrass equation(with one small exception in
characteristic 2).
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Types of Reduction

Proof
If the characteristic of k is not 2, then if we permit ourselves to
stray from Weierstrass form for a moment, we can complete the
square on

y2 + a1xy + a3y

by replacing y with 1/2(y − a1x− a3) so that y2 + a1xy + a3

becomes
1/4(y2 − (a1x + a3)2),

so that the solutions to our Weierstrass equations are exactly the
solutions(under the shift of y) to

y2 = 4(x3 + a2x
2 + a4x + a6) + (a1x + a3)2

= 4x3 + b2x
2 + 2b4x + b6 =: g(x)
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Types of Reduction

Therefore we have a singular point if and only if there is a point
(x0, y0) where

∂f/∂y(x0, y0) = 2y0 = 0

and
g′(x) = ∂f/∂x = −(12x2

0 + 2b2x0 + 2b4) = 0

where f(x, y) = y2 − g(x). Thus y0 = 0 and x0 is a common root
of g and g′. However, we know that the discriminant of g is the
resultant of g and g′, so we have a singular point if and only if the
discriminant of g is zero. Then by a simple calculation, the
discriminant of g is ∆(E)/16.
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Types of Reduction

If the characteristic of k is 2, then j = c3
4/∆(E) but

c4 = b2
2 − 24b4 = b2

2 and b2 = a2
1 + 4a2 = a2

1 so j = a12
1 /∆(E).

We proceed by cases: If j 6= 0 then a1 is invertible, so we can
make the change of coordinates

x = a2
1x

′2 + a3/a1, y = a3
1y

′ + (a2
1a4)/a3

1

giving the form
y2 + xy = x3 + a2x

2 + a6

where ∆(E) = a6. We then note that we have a singular point if
and only if x = 0 and y − 3x2 = y = 0 and the point (0, 0) is on
the curve if and only if a6 = ∆(E) = 0.
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Types of Reduction

If j = 0 then we make the coordinate change x = x′ + a2 and
y = y′ giving

y2 + a3y = x3 + a4x + a6 ∆(E) = a4
3

so we get a singular point if and only if a3 = 0,

3x2 + a4 = x2 − a4 = 0, and y2 = a
3/2
4 + a

3/2
4 + a6 = a6. In the

cases that Silverman considers (k perfect) we then have a
singularity if and only if ∆(E) = 0, but if a4 or a6 is not a square
in k, the curve will not be singular even if ∆(E) = 0.
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Types of Reduction

Note further that in each of these cases, we have at most one
singular point when ∆(E) = 0. If the characteristic is not 2, since
0 = 16∆(E) = ∆(g), g has a double root, but since g is cubic,
there can be at most one double root. If the characteristic is 2 and
j 6= 0 then (0, 0) is the only possible singular point and if j = 0
then the singular point is (

√
a4,
√

a6) (if these square roots exist).
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Types of Reduction

We now explore the types of singularities that can occur at the one
given point. At a nonsingular point, at least one of ∂f/∂x or
∂f/∂y is nonzero, so at the nonsingular point (x0, y0) we have the
well-defined tangent line

∂f/∂x(x0, y0)(x− x0) + ∂f/∂y(x0, y0)(y − y0) = 0.

If (x0, y0) is a singular point, both partials are zero and the
equation is simply 0 = 0, which does not define a line. We will
nonetheless have a pair of lines which get arbitrarily close to our
singular curve. When these two lines coincide, we will call that
singularity a cusp and when they do not coincide we will call that
singularity a node.
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Types of Reduction

Theorem (AEC III.1.4)

A singular point (x0, y0) is a node if c4 6= 0 and a cusp if c4 = 0.

First, for ease of calculation, a Lemma whose proof is
computational.

Lemma
Two invariants of a Weierstrass equation, ∆ and c4 = b2

2 − 24b4

become ∆/u12 and c4/u4 under the standard coordinate
change(and are thus unchanged by translation).

With this in mind, we shift the singular point (x0, y0) over to (0, 0)
without changing c4. We can now see clearly that
a6 = a4 = a3 = 0 because a6 = f(0, 0), a4 = ∂f/∂x(0, 0) and
a3 = ∂f/∂y(0, 0). Then c4 = b2

2 = (a2
1 + 4a2)2 because b4 = 0.
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Types of Reduction

Our Weierstrass equation is then

f(x, y) = y2 + a1xy − a2x
2 − x3 = 0.

We then consider that perhaps in the splitting field of
h(y) = y2 + a1y − a2,

y2 + a1xy − a2x
2 = (y − αx)(y − βx)

where α and β are roots of h. The lines y = αx and y = βx are
the lines to which we refer because if |x| < ε, then the points
(x, αx) and (x, βx) are such that |f(x, αx)| < ε3 and likewise for
β.
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Types of Reduction

The question has now been reduced to: When is α = β? If the
characteristic of k is not 2, the quadratic formula tells us that

α =
−a1 +

√
a2

1 + 4a2

2
, β =

−a1 −
√

a2
1 + 4a2

2
.

Therefore we have a cusp if and only if 0 = a2
1 + 4a2 = b2, or as

the book prefers, c4 = 0.
If the characteristic is 2, we note that b2 = a2

1 + 4a2 = a2
1. But

when we consider that
h(y) = (y − α)(y − β) = y2 − (α + β)y + αβ we see that

α = β ⇐⇒ α + β = 0 ⇐⇒ a1 = 0 ⇐⇒ b2 = 0 ⇐⇒ c4 = 0.
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Types of Reduction

Since we have defined bad reduction to be when an elliptic curve
E/K reduces to a singular curve, it makes sense to say E/K has
good reduction at a discrete valuation v when Ẽ/k is everywhere
nonsingular (k is the residue field of v).

When Ẽ has a node, we will say that E/K has semi-stable
reduction at v and when Ẽ has a cusp, we will say that E/K has
unstable reduction at v.
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Types of Reduction

We now collect our results as follows:

Corollary

If v is a discrete valuation on K with valuation ring R and
valuation ideal π, then if E is an elliptic curve defined over K,

E has good reduction at v if v(∆) = 0
E has semi-stable reduction at v if v(∆) > 0 but v(c4) = 0
E has unstable reduction at v if v(∆), v(c4) > 0.
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Legendre Normal Form and Deuring Normal Form

We have now developed enough terminology where we can state
our Theorem:

Theorem (The Semi-Stable Reduction Theorem)

If E/K is an elliptic curve and v a discrete valuation on K, then
there is a finite extension K ′/K and a discrete valuation v′ lying
over v so that if we let E′/K ′ be an elliptic curve over K ′ defined
by the same Weierstrass equation as E, then E′ has either good or
semi-stable reduction.

Our main tool for proving this will be to use special normal forms
defined over extensions of K, Legendre Normal Form and Deuring
Normal Form.
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Legendre Normal Form and Deuring Normal Form

Theorem
If K is a field of characteristic not equal 2, any Elliptic Curve E/K
is isomorphic over K to some

Eλ : y2 = x(x− 1)(x− λ),

where λ ∈ K.

As in the classification of singularities, since the characteristic is
not 2, E/K can be shifted to

E : y2 = 4x3 + b2x
2 + 2b4x + b6 = g(x)

and then back to a Weierstrass equation by the substitution
(x, y) 7→ (x, 2y) giving us y2 = (1/4)g(x).
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Since (1/4)g(x) is monic, in a splitting field L,

(1/4)g(x) = (x− e1)(x− e2)(x− e3).

We know that they are all distinct because ∆(E) = 16∆(g) 6= 0.
This is important because we will define λ = e3−e1

e2−e1
, and if λ = 0 or

1 then our curve is singular.
Extending to L(

√
e2 − e1), we make the substitution

x = (e2 − e1)x′ + e1, y = (e2 − e1)3/2y′,

Which completes our proof. Note here that we could in fact find a
finite, separable extension over which they were isomorphic, rather
than going all the way up to K.
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Theorem
If the characteristic of K is not 3, we can put E in what is called
Deuring Normal Form, i.e.

y2 + αxy + y = x3

where α ∈ K and α3 6= 27 (we are forced into this last condition
because the discriminant here is α3 − 27).

We will accomplish this via a suitable change of coordinates. We
will first divide the problem up into cases. If char(k) is 2 and
j 6= 0, we first change to the form y2 + xy = x3 + a2x

2 + a6, if
j = 0 we can switch first to y2 + a3y = x3 + a4x + a6, and if the
characteristic is neither 2 nor 3 we switch to short Weierstrass
form y2 = x3 + Ax + B.
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Once we have made our initial change of coordinates for j 6= 0 (so
we must have a1 = 1 and a6 6= 0) we let u be a solution to
u12 + u9 + a6 = 0, then r = u3, s a solution to s2 + s + a2 + u3

and t = u3s + u6. In this case our α = 1/u.

If j = 0 after our inital coordinate change, we see that a3 6= 0
because ∆ = a4

3. Then we have u a cube root of a3, s a root of
s4 + a3s + a4 = 0, r = s2 and t a root of t2 + a3t + a6 + s2a4 = 0.
In this case, α = 0.
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Finally if the characteristic is not 2 or 3 we first switch to short
Weierstrass form and our coordinate change is predetermined. We

must have s = 0, r =
√
−A/3, t =

√
B + A

√
−A/3−A

√
−A/27

and u = 3

√
2
√

B + A
√
−A/3−A

√
−A/27.

Note that in all these cases, the extensions are finite(clearly) and
separable by computing the gcd of each defining polynomial with
its derivative.



Math 8430 Final Exam:The Semi-Stable Reduction Theorem for Elliptic Curves

The Proof

We now have all the machinery in place to complete a proof of
Semi-Stable Reduction. We begin with a Lemma

Lemma
If K ′/K is a finite extension and E/K is an elliptic curve with E′

the corresponding curve over K ′ then if E has good reduction, so
does E′. Likewise, if E has semistable reduction, so does E′.

To prove this we must first recall that since the way we categorized
reduction types depends entirely upon a valuation, we must define
v′ on K ′ “lying over” v. Our first step will be to look at R′, the
integral closure of R in K ′. Since R′ is the integral closure of a
PID(we only need a Dedekind Domain) in a finite separable
extension of K, it is a Dedekind Domain and so has unique
factorization of ideals.
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The Proof

Then with unique factorization of ideals, we can look at

πR′ = Pe1
1 . . .P

eg
g .

We will get a valuation lying over v if we localize R′ at any of
these prime ideals lying over π and then build a valuation v′ as we
build the p-adic valuation in Z or Zp(because R′

P is a local PID).
A good way to characterize v′ coming from Pi as “lying over” (π)
is by noting that v′|K = eiv.
With this in mind, we take a minimal Weierstrass equation for E
over K and then for E′/K ′ we make a coordinate change to a
Weierstrass equation minimal over K ′. As we mentioned earlier, ∆
becomes ∆/u12 and c4 becomes c4/u4 under any standard change
of coordinates.



Math 8430 Final Exam:The Semi-Stable Reduction Theorem for Elliptic Curves

The Proof

We consider then that

0 ≤ v′(∆′) = −12v′(u) + v′(∆)

and
0 ≤ v′(c′4) = −4v′(u) + v′(c4).

And therefore

v′(u) ≤ min{(ei/12)v(∆), (ei/4)v(c4)},

a quantity which is zero if E has good or semi-stable reduction.
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Therefore v′(u) = 0 so that

v′(∆′) = v′(∆) = eiv(∆) & v′(c′4) = v′(c4) = eiv(c4).

Thus v(∆) = 0 if and only if v′(∆) = 0 and likewise for c4. So E′

retains good reduction and likewise for semistable reduction.
With these tools, we will now prove the Semi-Stable Reduction
Theorem.



Math 8430 Final Exam:The Semi-Stable Reduction Theorem for Elliptic Curves

The Proof

char(k) is not 2

If the characteristic of k is not 2, we can put E/K into Legendre
Normal form

Eλ : y2 = x(x− 1)(x− λ)

in some finite separable extension L/K. Our key quantities are
then

∆ = 16λ2(λ− 1)2, c4 = 16(λ2 − λ + 1).

Therefore if λ ∈ R′, the valuation ring for v′ with valuation ideal
(π′) and λ 6= 0, 1 in R/(π′) then Eλ has good reduction at v′

because v(2) = 0 (because otherwise, 2 ≡ 0 mod π)
If λ ∈ R′ and λ ≡ 0, 1 mod π′ then Eλ has semistable reduction at
v′ because v′(c4) = 0.(and note the equation is minimal in this
case because if we lower the valuation of ∆, we bring v′(c4) < 0).
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The Proof

char(k) is not 2

If λ /∈ R′ then v′(λ) = −m < 0. But then v′(π′mλ) = 0. Now if
we extend up to L(

√
π′) then we can make the coordinate change

where u =
√

π′
m

and r = s = t = 0 to get an integral equation

E′
λ : y2 = x(x− π′m)(x− π′mλ)

with

∆′ = 16(π′mλ)2(π′2m)(π′mλ−π′m)2, c′4 = 16(π′2m−π′2mλ+(π′mλ)2)

So v′(∆′) = 2m but v′(c′4) = 0, and thus E′
λ has semistable

reduction.
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The Proof

char(k) is 2

If the characteristic of k is 2, we proceed in about the same
fashion using Deuring Normal form, where
∆ = α3 − 27 ≡ α3 + 1 mod π and c4 ≡ α4 mod π.

If α ∈ R′, v′(α3 − 27) = 0 then we have good reduction. If α ∈ R′

but v′(α3 − 27) > 0 then α3 = 1 + π′r for some r ∈ R′ and so
3v′(α) = v′(1 + π′r) = 0 so v′(c4) = 4v′(α) = 0 and we have
semi-stable reduction.
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The Proof

char(k) is 2

Then if α /∈ R′ then we pick the substitution where u = π′m if
v(α) = −m and r = s = t = 0. This gives us the equation

y2 + π′mαxy + π′3my = x3

with ∆′ = π′9m(π′mα + π′3m) and c′4 = (π′mα)4.
Therefore v′(∆′) = 9m and v′(c′4) = 4v′(π′mα) = 0 and we have
semi-stable reduction, completing our proof.
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Potential Good Reduction/Overtime

A related topic to semi-stable reduction is that of Potential Good
Reduction. In the VIGRE seminar we defined an Elliptic curve to
have potential good reduction when it had an integral j-Invariant.
The definition in Silverman however is that E/K has potential
good reduction if there is a finite (and for us, separable) extension
K ′ such that E′/K ′ has good reduction. The important fact that
we wish to prove here is that these two definitions are equivalent.
Moreover, our method of proof will be the same (Legendre and
Deuring Normal Forms)
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Potential Good Reduction/Overtime

char(k) is not 2

If j(E) is integral and char(k) 6= 2, we find λ ∈ L/K such that
Eλ = E via a change of coordinates. By computing the j-Invariant
of Eλ (which is just j(E) since the j-Invariant doesn’t change
under changes of coordinates), we find

(1− λ(1− λ))3 − j(E)λ2(1− λ)2 = 0.

Since j(E) is integral, so is λ by the above relation. Moreover, if
we reduce this equation mod π′ we see that v(λ) = 0 and
v(1− λ) = 0 (or else 1 ≡ 0 mod π′) and thus Eλ has good
reduction at v′.
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Potential Good Reduction/Overtime

char(k) is not 2

Now on the other hand if E/K has potential good reduction, then
let E′/K ′ have good reduction. By definition v′(∆′) = 0, telling us
that ∆′ ∈ R′×. Therefore

j(E) = j(E′) =
c′34
∆′

and we are done if the characteristic is not 2.
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Potential Good Reduction/Overtime

char(k) is 2

If j(E) is integral and char(k) = 2, then we can find an extension
L/K in which E has a Deuring Normal Form. Then we have the
relation

α3(α3 − 24)− (α3 − 27)j(E) = 0

This immediately tells us that α is integral and that
v(α3 − 27) = 0 because otherwise α3 ≡ 27 mod π′, which leads us
to a contradiction unless the characteristic of k is 3. Since
∆′ = α3 − 27 we have good reduction at v′.
Meanwhile our converse argument from characteristic not 2 holds
just as well, completing the proof and the lecture.
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