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Introduction

Last fall, the UGA Number Theory VIGRE group (led by
Drs. Pete Clark and Patrick Corn, including myself, Steve
Lane, Alex Rice, Nathan Walters, Steve Winburn and Ben
Wyser, with Brian Cook joining in the spring) met to study
torsion in elliptic curves over Q.

What we hoped to construct was a program which, given a
positive integer d, would output all possible torsion
subgroups of CM elliptic curves over a number field of
degree d. At the end of the day though, it would be good
enough to extend the known results about what groups can
occur as torsion subgroups for CM elliptic curves.
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Past Results

First, we know this will be a finite list due to the work of
Loic Merel, who proved in 1996 that given a particular d,
only finitely many groups can appear as torsion subgroups of
elliptic curves over a number field of degree d.

As is, we know these finite lists for all elliptic curves over
Q(Mazur,1977) and quadratic extensions
(Kamienny/Kenku/Momose,1990), and for the CM case we
know the more specific answer for Q(Olson,1974) and degree
2 and 3 extensions(Zimmer et. al 1989).
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Notation

We let K, F,M denote number fields.

We let E denote an elliptic curve and E(K) the group of
K-rational points.

E(K)[tors] will denote the torsion subgroup of E(K) and
E[N ] the group of N -torsion points.

DK will denote the discriminant of the maximal order of K,
while D will denote the discriminant of any order.

We let OK denote the maximal order of K while O(D) will
denote the imaginary quadratic order of discriminant D. We
further let h(D) denote the class number of O(D).

The theory of Complex Multiplication gives us a bijection
between the endomorphism ring of an elliptic curve E and
the j-invariant of E. Thus we say that if E has
endomorphism ring O(D), we call the j invariant of E jD.
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Why CM?

We restrict our attention to CM curves for computational
reasons. Namely, although there are usually infinitely many
elliptic curves with CM over a given number field, they
partition into finitely many families parametrized by their
j-invariant. We know there are finitely many CM
j-invariants over a number field of degree d because we
know [Q(jD) : Q] = h(D) and as Heilbronn proved in 1934,

As D → −∞, h(D)→∞.

For instance, the only CM j-invariants defined over Q are

0, 54000,−12288000, 1728, 287496,−3375,

16581375, 8000,−32768,−884736,−884736000,

−147197952000 and − 262537412640768000.
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Kubert Normal Form

Consider an elliptic curve E with an N -torsion point for
N ≥ 4. Whether or not E has CM, there is a change of
coordinates by which the elliptic curve can be put into
Kubert Normal Form(or is it Tate Normal Form?):

y2 + (1− c)xy − by = x3 − bx2,

with the N -torsion point moved to (0, 0).
Then the x and y coordinates of [m](0, 0) are rational
functions in b and c for any integer m. For example,

[3](0, 0) = (c, b− c)

[4](0, 0) = (
b2 − bc

c2
,
−b3 + b2c2 + b2c

c3
)
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How our algorithm works

From here on, we restrict our attention to N prime, > 3 for
simplicity. We know (0, 0) is an N -torsion point if and only
if the x values of

[
N+1

2

]
(0, 0) and −

[
N−1

2

]
(0, 0) are equal.

Then because these are all rational functions in b and c, we
can turn this into a polynomial equation

fN (b, c) = 0.

Moreover, the j-invariant of E is also a rational function in b
and c, so setting the j-invariant equal to a constant of our
choice is equivalent to setting a particular polynomial
equation equal to zero.
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An Example

If we for instance take N = 7, we get f7(b, c) = b2 − bc− c3
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Now if consider j = 0, we get the picture:
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So our elliptic curves with N -torsion points and prescribed
j-invariants are exactly the points (b, c) which are common
solutions to the N -polynomial and the j-polynomial.
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An Even Closer Look
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The b values of these points are then the solutions to the
resultant of these two polynomials. The degree of the
smallest irreducible factor of the resultant is then the least
degree of an extension of Q(j) over which a CM Elliptic
Curve is defined which has an N -torsion point.

To quickly determine how high a degree extension we need
to take to find N torsion on an elliptic curve with j invariant
jD, we factor the resultant mod p for all primes p ⊂ OQ(jD)

of small enough norm(it’s quicker for a computer to factor in
a finite field than otherwise).

We know how many N we need to consider by the
Silverberg-Prasad-Yogananda bounds, which state that
φ(e) ≤ w(O)d where e is the exponent of E(K)[tors]. Then
when we suspect that we have a least degree extension we
can factor the resultant over Q(jD).

All this was coded in MAGMA, and we share some results:
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Computational Results

N [K : Q] D N [K : Q] D

5 2 -4 43 14 -3

7 2 -3 47 46 several

11 5 -11 53 26 -4

13 4 -3 59 58 several

17 8 -4 61 20 -3

19 6 -3 67 22 -3

23 22 several 71 70 several

29 14 -4 73 24 -3

31 10 -3 79 26 -3

37 12 -3

41 20 -4
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Notes on the calculation

These calculations took about 10 days in MAGMA, including
30 hours on the N = 79 case alone. Notice that typically D
is either −4 (corresponding to Z[i]) or −3 ( corresponding to

Z
[

1+
√
−3

2

]
).

This is notable because those are the only 2 possible
endomorphism rings where the unit group is anything more
than ±1. It’s also notable that −4 pops up when
4|(N − 1)(least degree (N − 1)/2) and −3 pops up when
3|(N − 1)(least degree (N − 1)/3).
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Using this computation as inspiration, we announce the
following:

Theorem
Let N be an odd prime, E an elliptic curve defined over a
number field F with CM endomorphism ring OK where
K = Q(

√
D).

1. If
(

DK
N

)
6= −1, h(K)

w(K)(N − 1)|[K : Q].

2. If
(

DK
N

)
= −1, h(K)

w(K)(N
2 − 1)|[K : Q].

Remark: If N does not divide the conductor of O ⊂ OK , we
can get an isogeny between E with O-CM and E′ with
OK-CM and so we get the same result.
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Compare this to the result we used:

Theorem (Silverberg,Prasad,Yogananda)

If E is an elliptic curve over a number field F with O-CM
and e the exponent of E(F )[tors] then

φ(e) ≤ w(O)[F : Q]

Moreover if K = Q(
√

D) is the CM field of O(D) then

1. K ⊂ F implies φ(e) ≤ w(O)[F : Q]/2,

2. K 6⊂ F implies φ(#E(f)[tors]) ≤ w(O)[F : Q].
Notice that our bound recovers the first SPY bound in the
case of odd prime torsion, and also implies that given our
computational range we actually only have to check over the
13 rational j-invariants for the lowest degree because the
least prime for which

(
D
N

)
= −1 for all 9 applicable

discriminants is 3167.
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It appears that we can even do a little better than the
explicit class field theory result under special cases:

Theorem
If N is large enough with respect to DK then

1. If
(

DK
N

)
= 1, the least degree extension over which

there is a curve with an N -torsion point is
2 h(O)

w(O)(N − 1).

2. If
(

DK
N

)
= −1, the least degree extension over which

there is a curve with an N -torsion point is
h(O)
w(O)(N

2 − 1).

The downside to this theorem(which comes from Serre’s
Open Image Theorem) is that we have no idea how large N
has to be compared to D0, although it is sharp in every
applicable example we have.
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Current Happenings

As of now, we are finishing up different areas of the work. I
adapted some earlier code to compute some examples of
torsion subgroups and the lists for degree ≤ 13(remember
the lists are currently known for degree ≤ 3). For an
example of high-order torsion, consider the elliptic curve in
Kubert Normal Form with b defined by

x8−6x7+993x6+3504x5+4193x4+1814x3+347x2+30x+1

and c a certain 7th degree polynomial over b(omitted
because the coefficients are huge) This has 34 torsion.
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