Frobenius
Problem
Jim
Stankewicz

Introduction
Work with

Brown et al.

Work with
Shallit

Some recent progress on the Frobenius Problem

Jim Stankewicz

Department of Mathematics
The University of Georgia
December 4, 2010

The Classical Frobenius Problem

Frobenius
Problem
Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Given positive coprime integers

$$
a_{1}, \ldots, a_{n}
$$

the Frobenius Number

$$
g\left(a_{1}, \ldots, a_{n}\right)
$$

is defined to be the largest integer M for which there are no non-negative integers

$$
x_{1}, \ldots, x_{n}
$$

such that

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=M
$$

The Classical Frobenius Problem

Frobenius Problem

Jim
Stankewicz

Introduction
Work with

Brown et al.

Work with Shallit

The Frobenius Number

$$
g\left(a_{1}, \ldots, a_{n}\right)
$$

is defined to be the largest integer M for which there are no non-negative integers

$$
x_{1}, \ldots, x_{n}
$$

such that

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=M
$$

The Frobenius Problem is the problem of determining the Frobenius Number.

Classical work of Sylvester

Frobenius
Problem
Jim
Stankewicz

Introduction
Work with

Brown et al.

Work with Shallit

If we think of the Frobenius Problem as asking about representing integers by the linear form

$$
L(\vec{x})=a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

then when $n=2$ exactly half the integers between 1 and $\left(a_{1}-1\right)\left(a_{2}-1\right)$ are representable by L.

Moreover, we have the following well-known identity :

$$
g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}
$$

We know a lot when $n=2$

Frobenius Problem

Jim

Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Beck and Robins were able to rederive the classical results of Sylvester as well as the following representability results when $n=2$

- $g_{k}\left(a_{1}, a_{2}\right)=(k+1) a_{1} a_{2}-a_{1}-a_{2}$ where $g_{k}\left(a_{1}, a_{2}\right)$ denotes the largest k-representable integer
- If $k \geq 2$, the smallest k-representable integer(by L) is $a_{1} a_{2}(k-1)$
- If $k \geq 2$, the smallest interval containing all k-representable integers is $\left[g_{k-2}\left(a_{1}, a_{2}\right)+a_{1}+a_{2}, g_{k}\left(a_{1}, a_{2}\right)\right]$
- Exactly $a_{1} a_{2}-1$ integers are uniquely representable
- For $k>2$ exactly $a_{1} a_{2}$ integers are k-representable

Note that when $n=2$ or $k=0$ there's no difference between the largest integer representable at most k times and exactly k times.

We know a lot when $n=2$

Frobenius Problem

Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Beck and Robins were able to rederive the classical results of Sylvester as well as the following representability results when $n=2$

- $g_{k}\left(a_{1}, a_{2}\right)=(k+1) a_{1} a_{2}-a_{1}-a_{2}$ where $g_{k}\left(a_{1}, a_{2}\right)$ denotes the largest k-representable integer
- If $k \geq 2$, the smallest k-representable integer(by L) is $a_{1} a_{2}(k-1)$
- If $k \geq 2$, the smallest interval containing all k-representable integers is $\left[g_{k-2}\left(a_{1}, a_{2}\right)+a_{1}+a_{2}, g_{k}\left(a_{1}, a_{2}\right)\right]$
- Exactly $a_{1} a_{2}-1$ integers are uniquely representable
- For $k \geq 2$ exactly $a_{1} a_{2}$ integers are k-representable

Note that when $n=2$ or $k=0$ there's no difference between the largest integer representable at most k times and exactly k times.

We know a lot when $n=2$

Frobenius Problem

Jim

Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Beck and Robins were able to rederive the classical results of Sylvester as well as the following representability results when $n=2$

- $g_{k}\left(a_{1}, a_{2}\right)=(k+1) a_{1} a_{2}-a_{1}-a_{2}$ where $g_{k}\left(a_{1}, a_{2}\right)$ denotes the largest k-representable integer
- If $k \geq 2$, the smallest k-representable integer(by L) is $a_{1} a_{2}(k-1)$
- If $k \geq 2$, the smallest interval containing all k-representable integers is $\left[g_{k-2}\left(a_{1}, a_{2}\right)+a_{1}+a_{2}, g_{k}\left(a_{1}, a_{2}\right)\right]$
- Exactly $a_{1} a_{2}-1$ integers are uniquely representable
- For $k \geq 2$ exactly $a_{1} a_{2}$ integers are k-representable

Note that when $n=2$ or $k=0$ there's no difference between the largest integer representable at most k times and exactly k times.

We know a lot when $n=2$

Frobenius
Problem
Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Beck and Robins were able to rederive the classical results of Sylvester as well as the following representability results when $n=2$

- $g_{k}\left(a_{1}, a_{2}\right)=(k+1) a_{1} a_{2}-a_{1}-a_{2}$ where $g_{k}\left(a_{1}, a_{2}\right)$ denotes the largest k-representable integer
- If $k \geq 2$, the smallest k-representable integer(by L) is $a_{1} a_{2}(k-1)$
- If $k \geq 2$, the smallest interval containing all k-representable integers is $\left[g_{k-2}\left(a_{1}, a_{2}\right)+a_{1}+a_{2}, g_{k}\left(a_{1}, a_{2}\right)\right]$
- Exactly $a_{1} a_{2}-1$ integers are uniquely representable - For $k \geq 2$ exactly $a_{1} a_{2}$ integers are k-representable

Note that when $n=2$ or $k=0$ there's no difference between the largest integer representable at most k times and exactly k times.

We know a lot when $n=2$

Frobenius
Problem
Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Beck and Robins were able to rederive the classical results of Sylvester as well as the following representability results when $n=2$

- $g_{k}\left(a_{1}, a_{2}\right)=(k+1) a_{1} a_{2}-a_{1}-a_{2}$ where $g_{k}\left(a_{1}, a_{2}\right)$ denotes the largest k-representable integer
- If $k \geq 2$, the smallest k-representable integer(by L) is $a_{1} a_{2}(k-1)$
- If $k \geq 2$, the smallest interval containing all k-representable integers is $\left[g_{k-2}\left(a_{1}, a_{2}\right)+a_{1}+a_{2}, g_{k}\left(a_{1}, a_{2}\right)\right]$
- Exactly $a_{1} a_{2}-1$ integers are uniquely representable
- For $k \geq 2$ exactly $a_{1} a_{2}$ integers are k-representable

Note that when $n=2$ or $k=0$ there's no difference between the largest integer representable at most k times and exactly k times.

Not so much when $n \geq 3$

For $n \geq 3$ the Classical Frobenius problem becomes much less tractable, in fact NP Hard.

What little we know comes from either the asymptotic (this version due to Nathanson) on the number of representations of M by the linear form L

$$
r_{L}(M)=\frac{M^{n-1}}{a_{1} \ldots a_{n}(n-1)!}+O\left(M^{n-2}\right)
$$

Or from the formula of Brauer and Shockley

$$
g\left(a_{1}, d a_{2}, \ldots, d a_{n}\right)=d g\left(a_{1}, a_{2}, \ldots, a_{n}\right)+(d-1) a_{1}
$$

Work with Brown et al.

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

In joint work with

- Alexander Brown
- Eleanor Dannenberg
- Jennifer Fox
- Joshua Hanna
- Katherine Keck
- Alexander Moore
- Zachary Robbins
- Brandon Samples
we found numerical evidence that a Brauer-Shockley type of theorem should hold for an appropriate generalization of the Frobenius Number.

One source of difficulties

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with Brown et al.

If $n \geq 3$ we note that the asymptotic for $r_{L}(M)$ implies that there will be positive integers k where there is NO integer M which is representable in exactly k different ways.

Therefore there are two distinct generalizations of the quantity g_{k} (or if you prefer, k-representability)

- The largest integer which is representable in at least k different ways
- The largest integer which is representable in exactly k different ways if such an integer exists and it's either zero (or undefined) otherwise.

We used the second generalization because it made the following true

One source of difficulties

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

If $n \geq 3$ we note that the asymptotic for $r_{L}(M)$ implies that there will be positive integers k where there is NO integer M which is representable in exactly k different ways.

Therefore there are two distinct generalizations of the quantity g_{k} (or if you prefer, k-representability):

- The largest integer which is representable in at least k different ways
- The largest integer which is representable in exactly k different ways if such an integer exists and it's either zero (or undefined) otherwise.

We used the second generalization because it made the following true:

One source of difficulties

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with Brown et al.

Work with Shallit

If $n \geq 3$ we note that the asymptotic for $r_{L}(M)$ implies that there will be positive integers k where there is NO integer M which is representable in exactly k different ways.

Therefore there are two distinct generalizations of the quantity g_{k} (or if you prefer, k-representability):

- The largest integer which is representable in at least k different ways
- The largest integer which is representable in exactly k different ways if such an integer exists and it's either zero (or undefined) otherwise.

We used the second generalization because it made the following true:

Our result

Frobenius
Problem

Jim

Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Theorem

$$
\begin{aligned}
& \text { If } k \geq 0 \text { either } \\
& \qquad g_{k}\left(a_{1}, d a_{2}, \ldots, d a_{n}\right)=d \cdot g_{k}\left(a_{1}, a_{2}, \ldots, a_{n}\right)+(d-1) a_{1} \\
& \text { or } g_{k}\left(a_{1}, d a_{2}, \ldots, d a_{n}\right)=g_{j}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0 \text { (or undefined). }
\end{aligned}
$$

We also discovered "discrepancies" or instances where $j<k$ but

$$
0<g_{k}\left(a_{1}, \ldots, a_{n}\right)<g_{j}\left(a_{1}, \ldots, a_{n}\right)
$$

and these findings were published in the article "On a Generalization of the Frobenius Number" in January in the online Journal of Integer Sequences.

田
 An Example

Frobenius
Problem
Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

$$
\text { Let } a_{1}=3, a_{2}=5, a_{3}=8
$$

k	0	1	2	3	4	5	6	7	8	9
g_{k}	7	12	17	22	25	28	31	34	37	39

k	10	11	12	13	14	15	16	17	18	19
g_{k}	42	44	47	49	52	51	55	57	58	60

Besides being oddities, understanding the extent to which these discrepancies occur is key to understanding the interplay between the two generalizations of g_{k} and thus the general representability of positive integers by L.

An Example

$$
\text { Let } a_{1}=3, a_{2}=5, a_{3}=8
$$

k	0	1	2	3	4	5	6	7	8	9
g_{k}	7	12	17	22	25	28	31	34	37	39

k	10	11	12	13	14	15	16	17	18	19
g_{k}	42	44	47	49	52	51	55	57	58	60

Besides being oddities, understanding the extent to which these discrepancies occur is key to understanding the interplay between the two generalizations of g_{k} and thus the general representability of positive integers by L.

More on discrepancy

Frobenius
Problem

Jim

Stankewicz

Introduction
Work with Brown et al.

Work with Shallit

After publication, Jeffrey Shallit of the University of Waterloo discovered that the examples we produced had a peculiar property: that a_{1}, \ldots, a_{n} were such that there was some i and some $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n} \in \mathbf{Z}_{\geq 0}$ such that

$$
a_{i}=a_{1} x_{1}+\cdots+a_{i-1} x_{i-1}+a_{i+1} x_{i+1}+\cdots+a_{n} x_{n}
$$

He called such tuples of coprime positive integers unreasonable since it was possible to use them to cook up trivial discrepancies such as:

$$
\begin{aligned}
& g_{0}(4,5,8,10)=11 \\
& g_{1}(4,5,8,10)=9
\end{aligned}
$$

Work with Shallit

Frobenius
Problem
Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

Shallit produced many discrepancies, even for reasonable tuples of coprime positive integers, and offered to collaborate. The end result was the paper "Unbounded Discrepancy in Frobenius Numbers" to appear in INTEGERS. The following is the main theorem.

Theorem
(1) If $n \geq 6$

$$
g_{0}(2 n-2,2 n-1,2 n, 3 n-3,3 n)=n^{2}-3 n+1
$$

(2) If $k \geq 1, n>6 k+3$,

$$
g_{k}(2 n-2,2 n-1,2 n, 3 n-3,3 n)=(6 k+3) n-1
$$

A Quick idea of the proof of part 2

Frobenius Problem

Jim

Stankewicz

Introduction
Work with Brown et al.

Work with Shallit

A key fact is that there are many possible "swaps" among a representation

$$
a(2 n-2)+b(2 n-1)+c(2 n)+d(3 n-3)+e(3 n)=M
$$

e.g.

- $(a, b, c, d, e) \mapsto(a+3, b, c, d-2, e)$ or $(a, b, c, d, e) \mapsto(a, b, c+3, d, e-2)$
- $(a, b, c, d, e) \mapsto(a+1, b+1, c+1, d-1, e-1)$
- $(a, b, c, d, e) \mapsto(a, b+3, c, d-1, e-1)$
- $(a, b, c, d, e) \mapsto(a-1, b+2, c-1, d, e)$

So if M is k-representable, can show that $M \leq(2 n-1)+2(2 n)+(2 k-1) 3 n=(6 k+3) n-1$

Conclusions

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with
Brown et al.
Work with Shallit

So it's not merely that we can have reasonable tuples where $0<g_{1}<g_{0}$ or $0<g_{k}<g_{0}$.

It's that the difference $g_{0}-g_{k}$ can become arbitrarily large for any $k \geq 1$.

We also found a family in $n \geq 6$ variables where $g_{0}-g_{1}$ can become unboundedly large and we can have $0<g_{1}<g_{0}$ in four variables.

It's still not known if we can have $0<g_{k+1}<g_{k}$ for $k<14$ in 3 variables.

There are some known examples where $g_{2}<g_{1}<g_{0}$

Conclusions

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with

Brown et al

Work with Shallit

So it's not merely that we can have reasonable tuples where $0<g_{1}<g_{0}$ or $0<g_{k}<g_{0}$.

It's that the difference $g_{0}-g_{k}$ can become arbitrarily large for any $k \geq 1$.

We also found a family in $n \geq 6$ variables where $g_{0}-g_{1}$ can
become unboundedly large and we can have $0<g_{1}<g_{0}$ in four variables

It's still not known if we can have $0<g_{k+1}<g_{k}$ for $k<14$ in 3 variables.

There are some known examples where $g_{2}<g_{1}<g_{0}$

Conclusions

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with Brown et al.

Work with Shallit

So it's not merely that we can have reasonable tuples where $0<g_{1}<g_{0}$ or $0<g_{k}<g_{0}$.

It's that the difference $g_{0}-g_{k}$ can become arbitrarily large for any $k \geq 1$.

We also found a family in $n \geq 6$ variables where $g_{0}-g_{1}$ can become unboundedly large and we can have $0<g_{1}<g_{0}$ in four variables.

It's still not known if we can have $0<g_{k+1}<g_{k}$ for $k<14$ in 3 variables.

There are some known examples where $g_{2}<g_{1}<g_{0}$

Conclusions

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with Brown et al.

Work with Shallit

So it's not merely that we can have reasonable tuples where $0<g_{1}<g_{0}$ or $0<g_{k}<g_{0}$.

It's that the difference $g_{0}-g_{k}$ can become arbitrarily large for any $k \geq 1$.

We also found a family in $n \geq 6$ variables where $g_{0}-g_{1}$ can become unboundedly large and we can have $0<g_{1}<g_{0}$ in four variables.

It's still not known if we can have $0<g_{k+1}<g_{k}$ for $k<14$ in 3 variables.

There are some known examples where $g_{2}<g_{1}<g_{0}$

Conclusions

Frobenius
Problem

Jim
Stankewicz

Introduction
Work with Brown et al.

Work with Shallit

So it's not merely that we can have reasonable tuples where $0<g_{1}<g_{0}$ or $0<g_{k}<g_{0}$.

It's that the difference $g_{0}-g_{k}$ can become arbitrarily large for any $k \geq 1$.

We also found a family in $n \geq 6$ variables where $g_{0}-g_{1}$ can become unboundedly large and we can have $0<g_{1}<g_{0}$ in four variables.

It's still not known if we can have $0<g_{k+1}<g_{k}$ for $k<14$ in 3 variables.

There are some known examples where $g_{2}<g_{1}<g_{0}$
Thank you!

