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The Classical Frobenius Problem

Given positive coprime integers

a1, . . . , an

the Frobenius Number

g(a1, . . . , an)

is defined to be the largest integer M for which there are no
non-negative integers

x1, . . . , xn

such that
a1x1 + · · ·+ anxn = M.
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The Classical Frobenius Problem

The Frobenius Number

g(a1, . . . , an)

is defined to be the largest integer M for which there are no
non-negative integers

x1, . . . , xn

such that
a1x1 + · · ·+ anxn = M.

The Frobenius Problem is the problem of determining the
Frobenius Number.
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Classical work of Sylvester

If we think of the Frobenius Problem as asking about
representing integers by the linear form

L(~x) = a1x1 + · · ·+ anxn

then when n = 2 exactly half the integers between 1 and
(a1 − 1)(a2 − 1) are representable by L.

Moreover, we have the following well-known identity :

g(a1, a2) = a1a2 − a1 − a2
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We know a lot when n = 2

Beck and Robins were able to rederive the classical results of
Sylvester as well as the following representability results when
n = 2

gk(a1, a2) = (k + 1)a1a2 − a1 − a2 where gk(a1, a2)
denotes the largest k-representable integer
If k ≥ 2, the smallest k-representable integer(by L) is
a1a2(k − 1)
If k ≥ 2, the smallest interval containing all k-representable
integers is [gk−2(a1, a2) + a1 + a2, gk(a1, a2)]

Exactly a1a2 − 1 integers are uniquely representable
For k ≥ 2 exactly a1a2 integers are k-representable

Note that when n = 2 or k = 0 there’s no difference between
the largest integer representable at most k times and exactly k
times.
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Not so much when n ≥ 3

For n ≥ 3 the Classical Frobenius problem becomes much less
tractable, in fact NP Hard.

What little we know comes from either the asymptotic (this
version due to Nathanson) on the number of representations of
M by the linear form L

rL(M) =
Mn−1

a1 . . . an(n − 1)!
+ O(Mn−2)

Or from the formula of Brauer and Shockley

g(a1, da2, . . . , dan) = dg(a1, a2, . . . , an) + (d − 1)a1
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Work with Brown et al.

In joint work with

Alexander Brown
Eleanor Dannenberg
Jennifer Fox
Joshua Hanna
Katherine Keck
Alexander Moore
Zachary Robbins
Brandon Samples

we found numerical evidence that a Brauer-Shockley type of
theorem should hold for an appropriate generalization of the
Frobenius Number.
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One source of difficulties

If n ≥ 3 we note that the asymptotic for rL(M) implies that
there will be positive integers k where there is NO integer M
which is representable in exactly k different ways.

Therefore there are two distinct generalizations of the quantity
gk (or if you prefer, k-representability):

The largest integer which is representable in at least k
different ways
The largest integer which is representable in exactly k
different ways if such an integer exists and it’s either zero
(or undefined) otherwise.

We used the second generalization because it made the
following true:
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Our result

Theorem

If k ≥ 0 either

gk(a1, da2, . . . , dan) = d · gk(a1, a2, . . . , an) + (d − 1)a1

or gk(a1, da2, . . . , dan) = gj(a1, a2, . . . , an) = 0(or undefined).

We also discovered "discrepancies" or instances where j < k but

0 < gk(a1, . . . , an) < gj(a1, . . . , an)

and these findings were published in the article “On a
Generalization of the Frobenius Number” in January in the
online Journal of Integer Sequences.
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An Example

Let a1 = 3, a2 = 5, a3 = 8

k 0 1 2 3 4 5 6 7 8 9
gk 7 12 17 22 25 28 31 34 37 39

k 10 11 12 13 14 15 16 17 18 19
gk 42 44 47 49 52 51 55 57 58 60

Besides being oddities, understanding the extent to which these
discrepancies occur is key to understanding the interplay
between the two generalizations of gk and thus the general
representability of positive integers by L.
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More on discrepancy

After publication, Jeffrey Shallit of the University of Waterloo
discovered that the examples we produced had a peculiar
property: that a1, . . . , an were such that there was some i and
some x1, . . . , xi−1, xi+1, . . . xn ∈ Z≥0 such that

ai = a1x1 + · · ·+ ai−1xi−1 + ai+1xi+1 + · · ·+ anxn

He called such tuples of coprime positive integers unreasonable
since it was possible to use them to cook up trivial discrepancies
such as:

g0(4, 5, 8, 10) = 11

g1(4, 5, 8, 10) = 9
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Shallit produced many discrepancies, even for reasonable tuples
of coprime positive integers, and offered to collaborate. The
end result was the paper “Unbounded Discrepancy in Frobenius
Numbers” to appear in INTEGERS. The following is the main
theorem.

Theorem
1 If n ≥ 6

g0(2n − 2, 2n − 1, 2n, 3n − 3, 3n) = n2 − 3n + 1

2 If k ≥ 1, n > 6k + 3,

gk(2n − 2, 2n − 1, 2n, 3n − 3, 3n) = (6k + 3)n − 1
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A Quick idea of the proof of part 2

A key fact is that there are many possible “swaps” among a
representation

a(2n − 2) + b(2n − 1) + c(2n) + d(3n − 3) + e(3n) = M

e.g.
(a, b, c , d , e) 7→ (a + 3, b, c , d − 2, e) or
(a, b, c , d , e) 7→ (a, b, c + 3, d , e − 2)
(a, b, c , d , e) 7→ (a + 1, b + 1, c + 1, d − 1, e − 1)
(a, b, c , d , e) 7→ (a, b + 3, c , d − 1, e − 1)
(a, b, c , d , e) 7→ (a − 1, b + 2, c − 1, d , e)

So if M is k-representable, can show that
M ≤ (2n − 1) + 2(2n) + (2k − 1)3n = (6k + 3)n − 1
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Conclusions

So it’s not merely that we can have reasonable tuples where
0 < g1 < g0 or 0 < gk < g0.

It’s that the difference g0 − gk can become arbitrarily large for
any k ≥ 1.

We also found a family in n ≥ 6 variables where g0 − g1 can
become unboundedly large and we can have 0 < g1 < g0 in four
variables.

It’s still not known if we can have 0 < gk+1 < gk for k < 14 in
3 variables.

There are some known examples where g2 < g1 < g0

Thank you!
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