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Modular and Shimura Curves
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Let N be a positive integer and k be a field. Define
Yo(N) so that
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Introduction

Yo(N)(K)" ="{(¢: B2 = E2) i}

where E;, E; are elliptic curves over k and ker ¢ is cyclic
of order N.

By Xo(/N) we denote the natural compactification of
Yo(N).

If Bp is a quaternion algebra over Q of discriminant D,
XP(N) is the Shimura curve analogue of Xo(N).



Why Shimura curves?
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Introduction

@ Useful for studying Elliptic curves and abelian
varieties

e Modular forms for [o(N) are given by the
cohomology of Yo(N)c

@ Level-raising and level-lowering is given by the
interplay between XP(N) and Xo(DN).




Atkin-Lehner Involutions
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XL (N) comes furnished with a group of automorphisms
W = {w,, : m||DN} called the Atkin-Lehner group. If
m # 1, that is w,, # id, then w,, is of order two and is
called an Atkin-Lehner involution.

Introduction

For simplicity, we talk only about the main Atkin-Lehner
involution wpy. Note that if D = 1 then on

X3 (N) = Xo(N) this simply takes an isogeny

¢ : E; — E; to the dual isogeny g/b\: E, — E.



The Big Question
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Work of Shimura shows that XP(N)c¢ can be given the
structure of a smooth variety over Q. He also showed
that XP(N)(Q) # 0 if and only if D = 1.

Question: Are there any other ways to give XP(N)c a Q
structure? Any for which there are Q-rational points?
For which there are many rational points?



The Big Question
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Work of Shimura shows that XP(N)c can be given the
structure of a smooth variety over Q. He also showed

that XP(N)(Q) # 0 if and only if D = 1.

Introduction

Question: Are there any other ways to give XP(N)c a Q
structure? Any for which there are Q-rational points?
For which there are many rational points?

Equivalent Question: Are there any twists of X (N) g
which have rational points? Many rational points?



Why Atkin-Lehner twists?

Rational Points

I°:/lt e Conjecturally, W = Aut(XP(N)) for all but finitely
many (D, N)
@ Atkin-Lehner twists over Q parametrize abelian
varieties over quadratic fields whose Galois
representations descend down to Q

Introduction

@ There is a connection between rational points on
Atkin-Lehner twists and the inverse Galois problem

@ The action of Atkin-Lehner on “superspecial points”
in positive characteristic can be understood in terms
of quaternion arithmetic.

First step: Use Hensel's Lemma along with the action on
superspecial points to understand p-adic points.



Let CP(N, d) denote the twist of X2 (N) by Q(v/d) and
wpy and suppose that no prime ramified in @(\/3)
divides DN.

Theorem (S-)

If p is inert in Q(v/d), CP(N, d)(Q,) is nonempty. If
p # 2 is ramified, CP(N, d)(Q,) is nonempty if and only
if p has a degree one factor in Q(j(~/—DN)) or

i (-45))




Giving a model when p is ramified
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Giving a model when p is ramified
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Theorem (S-)

If p|N is inert in Q(v/d) then CP(N, d)(Q,) # 0 if and
only if one of the following holds:

e p=2, forall g|D, g =3 mod 4, for all q|(N/2),
g=1mod4
e p=3mod4, D=1 N=por2p




Xo(39)z,
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The F3 special fiber of a regular model
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Theorem (S-)

If p|D is inert in Q(v/d), CP(N,d)(Q,) is nonempty. If

p|D is split, then CP(N,d)(Q,) is nonempty if and only

if
@ p=2and for all q|(D/2), g =3 mod 4, for all q|N,
g=1mod4
e p=1mod4, D=2p, N=1
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An Application
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If (_714) = —1 then C'(14,p*)(Q,) is nonempty for all
places v of Q if and only if( ) =1, <_—7> = 1

2
p p
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Corollary (Depends on the parity conjecture)

If p=17,33,41 mod 56, C'(14,p) is a rank one elliptic
curve.
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