Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$

Twists of Shimura Curves

Jim Stankewicz

Department of Mathematics
The University of Georgia
January 5, 2012

Modular and Shimura Curves

Rational Points on Varities

Jim Stankewicz
Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Let N be a positive integer and k be a field. Define $Y_{0}(N)$ so that

$$
Y_{0}(N)(k) "="\left\{\left(\phi: E_{1} \rightarrow E_{2}\right)_{/ k}\right\}
$$

where E_{1}, E_{2} are elliptic curves over k and $\operatorname{ker} \phi$ is cyclic of order N.

By $X_{0}(N)$ we denote the natural compactification of $Y_{0}(N)$.

If B_{D} is a quaternion algebra over \mathbb{Q} of discriminant D, $X_{0}^{D}(N)$ is the Shimura curve analogue of $X_{0}(N)$.

Why Shimura curves?

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

- Useful for studying Elliptic curves and abelian varieties
- Modular forms for $\Gamma_{0}(N)$ are given by the cohomology of $Y_{0}(N)_{\mathbb{C}}$
- Level-raising and level-lowering is given by the interplay between $X_{0}^{D}(N)$ and $X_{0}(D N)$.

Atkin-Lehner Involutions

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points
$X_{0}^{D}(N)$ comes furnished with a group of automorphisms $W=\left\{w_{m}: m \| D N\right\}$ called the Atkin-Lehner group. If $m \neq 1$, that is $w_{m} \neq \mathrm{id}$, then w_{m} is of order two and is called an Atkin-Lehner involution.

For simplicity, we talk only about the main Atkin-Lehner involution $w_{D N}$. Note that if $D=1$ then on $X_{0}^{1}(N)=X_{0}(N)$ this simply takes an isogeny $\phi: E_{1} \rightarrow E_{2}$ to the dual isogeny $\widehat{\phi}: E_{2} \rightarrow E_{1}$.

The Big Question

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Work of Shimura shows that $X_{0}^{D}(N)_{\mathbb{C}}$ can be given the structure of a smooth variety over \mathbb{Q}. He also showed that $X_{0}^{D}(N)(\mathbb{Q}) \neq \emptyset$ if and only if $D=1$.

Question: Are there any other ways to give $X_{0}^{D}(N)_{\mathbb{C}}$ a \mathbb{Q} structure? Any for which there are \mathbb{Q}-rational points?
For which there are many rational points?

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Work of Shimura shows that $X_{0}^{D}(N)_{\mathbb{C}}$ can be given the structure of a smooth variety over \mathbb{Q}. He also showed that $X_{0}^{D}(N)(\mathbb{Q}) \neq \emptyset$ if and only if $D=1$.

Question: Are there any other ways to give $X_{0}^{D}(N)_{\mathbb{C}}$ a \mathbb{Q} structure? Any for which there are \mathbb{Q}-rational points? For which there are many rational points?

Equivalent Question: Are there any twists of $X_{0}^{D}(N)_{/ \mathbb{Q}}$ which have rational points? Many rational points?

Why Atkin-Lehner twists?

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

- Conjecturally, $W=\operatorname{Aut}\left(X_{0}^{D}(N)\right)$ for all but finitely many (D, N)
- Atkin-Lehner twists over \mathbb{Q} parametrize abelian varieties over quadratic fields whose Galois representations descend down to \mathbb{Q}
- There is a connection between rational points on Atkin-Lehner twists and the inverse Galois problem
- The action of Atkin-Lehner on "superspecial points" in positive characteristic can be understood in terms of quaternion arithmetic.

First step: Use Hensel's Lemma along with the action on superspecial points to understand p-adic points.

If $p \nmid D N$

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Let $C^{D}(N, d)$ denote the twist of $X_{0}^{D}(N)$ by $\mathbb{Q}(\sqrt{d})$ and $w_{D N}$ and suppose that no prime ramified in $\mathbb{Q}(\sqrt{d})$ divides $D N$.

Theorem (S-)

If p is inert in $\mathbb{Q}(\sqrt{d}), C^{D}(N, d)\left(\mathbb{Q}_{p}\right)$ is nonempty. If $p \neq 2$ is ramified, $C^{D}(N, d)\left(\mathbb{Q}_{p}\right)$ is nonempty if and only if p has a degree one factor in $\mathbb{Q}(j(\sqrt{-D N}))$ or $\mathbb{Q}\left(j\left(\frac{1+\sqrt{-D N}}{2}\right)\right)$.

Giving a model when p is ramified

Rational Points on Varities
Jim Stankewicz
Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Giving a model when p is ramified

Rational Points on Varities
Jim Stankewicz
Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Rational Points on Varities

Jim Stankewicz

Introduction

$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Theorem (S-)

If $p \mid N$ is inert in $\mathbb{Q}(\sqrt{d})$ then $C^{D}(N, d)\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if one of the following holds:

- $p=2$, for all $q \mid D, q \equiv 3 \bmod 4$, for all $q \mid(N / 2)$, $q \equiv 1 \bmod 4$
- $p \equiv 3 \bmod 4, D=1, N=p$ or $2 p$

III
 $X_{0}(39)_{\mathbb{F}_{3}}$

Rational Points

on Varities
Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

The $\overline{\mathbb{F}}_{3}$ special fiber of a regular model

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Theorem (S-)

If $p \mid D$ is inert in $\mathbb{Q}(\sqrt{d}), C^{D}(N, d)\left(\mathbb{Q}_{p}\right)$ is nonempty. If $p \mid D$ is split, then $C^{D}(N, d)\left(\mathbb{Q}_{p}\right)$ is nonempty if and only if

- $p=2$ and for all $q \mid(D / 2), q \equiv 3 \bmod 4$, for all $q \mid N$, $q \equiv 1 \bmod 4$
- $p \equiv 1 \bmod 4, D=2 p, N=1$

Dual graph of $X_{0}^{858}(1)_{\overline{\mathbb{F}}_{13}}$

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Red edges correspond to fixed points of w_{66}

An Application

Rational Points on Varities

Jim Stankewicz

Introduction
$p \nmid D N$
$p \mid N$
$p \mid D$
Rational Points

Corollary

If $\left(\frac{-14}{p}\right)=-1$ then $C^{1}\left(14, p^{*}\right)\left(\mathbb{Q}_{V}\right)$ is nonempty for all
places v of \mathbb{Q} if and only if $\left(\frac{2}{p}\right)=1,\left(\frac{-7}{p}\right)=-1$

Corollary (Depends on the parity conjecture)

If $p \equiv 17,33,41 \bmod 56, C^{1}(14, p)$ is a rank one elliptic curve.

End

```
Rational Points on Varities
Jim Stankewicz
Introduction
\(p \nmid D N\)
\(p \mid N\)
\(p \mid D\)
Thank you!
```

Rational Points

