

Ratic	nal	Ρ	oin	ts
on	Var	it	ies	

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D

Rational Points

Twists of Shimura Curves

Jim Stankewicz

Department of Mathematics The University of Georgia

January 5, 2012

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Modular and Shimura Curves

Rational Points on Varities

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D|

Rational Points

Let N be a positive integer and k be a field. Define $Y_0(N)$ so that

$$V_0(N)(k)'' = "\{(\phi: E_1 \to E_2)_{/k}\}$$

where E_1, E_2 are elliptic curves over k and ker ϕ is cyclic of order N.

By $X_0(N)$ we denote the natural compactification of $Y_0(N)$.

If B_D is a quaternion algebra over \mathbb{Q} of discriminant D, $X_0^D(N)$ is the Shimura curve analogue of $X_0(N)$.

イロト 不得 トイヨト イヨト ヨー ろくぐ

Why Shimura curves?

Rational Points on Varities

Jim Stankewicz

Introduction

- p∤DN
- $p \mid N$
- р|D
- Rational Points

- Useful for studying Elliptic curves and abelian varieties
- Modular forms for $\Gamma_0(N)$ are given by the cohomology of $Y_0(N)_{\mathbb{C}}$
- Level-raising and level-lowering is given by the interplay between $X_0^D(N)$ and $X_0(DN)$.

イロト 不得 トイヨト イヨト ヨー ろくで

Atkin-Lehner Involutions

Rational Points on Varities

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D|

Rational Points

 $X_0^D(N)$ comes furnished with a group of automorphisms $W = \{w_m : m || DN\}$ called the Atkin-Lehner group. If $m \neq 1$, that is $w_m \neq id$, then w_m is of order two and is called an Atkin-Lehner involution.

For simplicity, we talk only about the main Atkin-Lehner involution w_{DN} . Note that if D = 1 then on $X_0^1(N) = X_0(N)$ this simply takes an isogeny $\phi: E_1 \to E_2$ to the dual isogeny $\widehat{\phi}: E_2 \to E_1$.

うして ふぼう ふほう ふほう しょう

The Big Question

Rational Points on Varities

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

 $p \mid D$

Rational Points

Work of Shimura shows that $X_0^D(N)_{\mathbb{C}}$ can be given the structure of a smooth variety over \mathbb{Q} . He also showed that $X_0^D(N)(\mathbb{Q}) \neq \emptyset$ if and only if D = 1.

Question: Are there any other ways to give $X_0^D(N)_{\mathbb{C}} \cong \mathbb{Q}$ structure? Any for which there are \mathbb{Q} -rational points? For which there are many rational points?

うして ふぼう ふほう ふほう しょう

The Big Question

Rational Points on Varities

Jim Stankewicz

Introduction

p∤DN

p|N

 $p \mid D$

Rational Points

Work of Shimura shows that $X_0^D(N)_{\mathbb{C}}$ can be given the structure of a smooth variety over \mathbb{Q} . He also showed that $X_0^D(N)(\mathbb{Q}) \neq \emptyset$ if and only if D = 1.

Question: Are there any other ways to give $X_0^D(N)_{\mathbb{C}} \cong \mathbb{Q}$ structure? Any for which there are \mathbb{Q} -rational points? For which there are *many* rational points?

Equivalent Question: Are there any twists of $X_0^D(N)_{/\mathbb{Q}}$ which have rational points? Many rational points?

ション ふゆ アメリア ショー シック

Why Atkin-Lehner twists?

Rational Points on Varities

Jim Stankewicz

Introduction

- p∤DN
- $p \mid N$
- p|D
- Rational Points

- Conjecturally, W = Aut(X₀^D(N)) for all but finitely many (D, N)
- Atkin-Lehner twists over Q parametrize abelian varieties over quadratic fields whose Galois representations descend down to Q
- There is a connection between rational points on Atkin-Lehner twists and the inverse Galois problem
- The action of Atkin-Lehner on "superspecial points" in positive characteristic can be understood in terms of quaternion arithmetic.

First step: Use Hensel's Lemma along with the action on superspecial points to understand *p*-adic points.

・ロト ・ 日 ・ モ ト ・ 田 ・ うへぐ

lf p∤DN

Rational Points on Varities

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

 $p \mid D$

Rational Points

Let $C^{D}(N, d)$ denote the twist of $X_{0}^{D}(N)$ by $\mathbb{Q}(\sqrt{d})$ and w_{DN} and suppose that no prime ramified in $\mathbb{Q}(\sqrt{d})$ divides DN.

Theorem (S-)

If p is inert in $\mathbb{Q}(\sqrt{d})$, $C^{D}(N, d)(\mathbb{Q}_{p})$ is nonempty. If $p \neq 2$ is ramified, $C^{D}(N, d)(\mathbb{Q}_{p})$ is nonempty if and only if p has a degree one factor in $\mathbb{Q}(j(\sqrt{-DN}))$ or $\mathbb{Q}\left(j\left(\frac{1+\sqrt{-DN}}{2}\right)\right)$.

うして ふぼう ふほう ふほう しょう

Giving a model when p is ramified

Ratio	nal	Ρ	oin	ts
on	Var	it	ies	

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D

Rational Points

.....

 $2(X_0^D(N)/w_m)_{\overline{\mathbb{F}}_p}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Giving a model when p is ramified

Jim Stankewicz

Introduction

p ∤ DN

p|N

 $p \mid D$

Rational Points

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rational Points on Varities

Jim Stankewicz

Introduction

p∤DN

 $p \mid N$

p|D

Rational Points

Theorem (S-)

If p|N is inert in $\mathbb{Q}(\sqrt{d})$ then $C^{D}(N, d)(\mathbb{Q}_{p}) \neq \emptyset$ if and only if one of the following holds:

p = 2, for all *q*|*D*, *q* ≡ 3 mod 4, for all *q*|(*N*/2), *q* ≡ 1 mod 4

イロト 不得 トイヨト イヨト ヨー ろくで

• $p \equiv 3 \mod 4$, D = 1, N = p or 2p

Ratio	nal	Ρ	oints
on	Var	it	ies

Jim Stankewicz

Introduction

 $p \nmid DN$

p|N

p|D

Rational Points

The $\overline{\mathbb{F}}_3$ special fiber of a regular model

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D

Rational Points

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Rational Points on Varities

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D

Rational Points

Theorem (S-)

If p|D is inert in $\mathbb{Q}(\sqrt{d})$, $C^{D}(N, d)(\mathbb{Q}_{p})$ is nonempty. If p|D is split, then $C^{D}(N, d)(\mathbb{Q}_{p})$ is nonempty if and only if

• p = 2 and for all q|(D/2), $q \equiv 3 \mod 4$, for all q|N, $q \equiv 1 \mod 4$

イロト 不得 トイヨト イヨト ヨー ろくで

•
$$p \equiv 1 \mod 4$$
, $D = 2p$, $N = 1$

Dual graph of $X_0^{858}(1)_{\overline{\mathbb{F}}_{13}}$

Rational Points on Varities

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

 $p \mid D$

Rational Points

Red edges correspond to fixed points of w_{66}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An Application

Corollary

Rational Points on Varities

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D|

Rational Points

If
$$\left(\frac{-14}{p}\right) = -1$$
 then $C^1(14, p^*)(\mathbb{Q}_v)$ is nonempty for all places v of \mathbb{Q} if and only if $\left(\frac{2}{p}\right) = 1$, $\left(\frac{-7}{p}\right) = -1$

Corollary (Depends on the parity conjecture)

If $p \equiv 17, 33, 41 \mod 56$, $C^1(14, p)$ is a rank one elliptic curve.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Thank you!

Ratio	nal	Ρ	oin	ts
on	Var	'it	ies	

Jim Stankewicz

Introduction

 $p \nmid DN$

 $p \mid N$

p|D

Rational Points